Publication

Phase estimation from noisy phase fringe patterns using linearly independent basis functions

Abstract

A novel technique is proposed for obtaining unwrapped phase estimation from a highly noisy exponential phase field. In this technique, the interference phase is represented as a linear combination of linearly independent and pre-defined basis functions along each row/column of the phase field at a time. Consequently, the problem of phase estimation is converted into the problem of the estimation of the weights of the basis functions. The extended Kalman filter formulation allows for the accurate estimation of these weights. The simulation results indicate that the formulation offers a strong noise robustness in the phase estimation. Experimental results obtained using digital holographic interferometry and digital speckle pattern interferometry setups are provided to demonstrate the practical applicability of the proposed method.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.