Basin boundary, edge of chaos and edge state in a two-dimensional model
Related publications (80)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The present study deals with the shedding process of the Kármán vortices at the trailing edge of a 2D hydrofoil at high Reynolds numbers. Investigations are performed in order to evaluate the ability of an unsteady numerical simulation to accurately reprod ...
River and open-channel flows are free surface boundary layer flows with complex 3D, large-scale, turbulent structures. The study of 2D and 3D large-scale turbulent flow structures is a great challenge for physicists, mathematicians and engineers from such ...
The study of turbulent flows has always been a challenge for scientists. Turbulent flows are common in nature and have an important role in several geophysical processes related to a variety of phenomena such as river morphology, landscape modeling, atmosp ...
We apply the iterated edge state tracking algorithm to study the boundary between laminar and turbulent dynamics in plane Couette flow at Re=400. Perturbations that are not strong enough to become fully turbulent nor weak enough to relaminarize tend toward ...
Experiments on vortex shedding from a cylinder placed in uniform flows of low concentration polymer solutions are reported for Reynolds numbers from 50 to 150. The fluids used were aqueous solutions of polyethylene oxide (PEO) and rheological characterizat ...
Transition to turbulence in pipe flow has puzzled scientists since the studies of Hagen, Poiseuille and, most prominently, Osborne Reynolds in the nineteenth century. Much of the difficulty in understanding the transition is connected with the linear stabi ...
The problem of accurate Eulerian-Lagrangian modeling of inertial particle dispersion in large-eddy simulation (LES) of turbulent wall-bounded flows is addressed. We run direct numerical simulation (DNS) of turbulent channel flow at shear Reynolds number Re ...
This paper presents a review of the mathematical models which can be adopted to describe the different physical phenomena characterizing the flow around a sailing yacht. The complete model accounting for laminar-turbulent transition regime, free-surface dy ...
Turbulent transport dynamics and level are investigated with the 5D gyrokinetic global code GYSELA, modelling the Ion Temperature Gradient instability with adiabatic electrons. The heat transport exhibits large scale events, propagating radially in both di ...
The research work reported in the present dissertation is aimed at the analysis of complex physical phenomena involving instabilities and nonlinearities occurring in fluids through state-of-the-art numerical modeling. Solutions of intricate fluid physics p ...