**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Laminar-turbulent boundary in plane Couette flow

Abstract

We apply the iterated edge state tracking algorithm to study the boundary between laminar and turbulent dynamics in plane Couette flow at Re=400. Perturbations that are not strong enough to become fully turbulent nor weak enough to relaminarize tend towards a hyperbolic coherent structure in state space, termed the edge state, which seems to be unique up to obvious continuous shift symmetries. The results reported here show that in cases where a fixed point has only one unstable direction, as for the lower branch solution in in plane Couette flow, the iterated edge tracking algorithm converges to this state. They also show that choice of initial state is not critical, and that essentially arbitrary initial conditions can be used to find the edge state.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (7)

Related concepts (30)

Related publications (33)

Fluid Mechanics

Ce cours de base est composé des sept premiers modules communs à deux cours bachelor, donnés à l’EPFL en génie mécanique et génie civil.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Computational fluid dynamics

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid (liquids and gases) with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems.

Fluid dynamics

In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion). Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation.

Fixed-point iteration

In numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e., More generally, the function can be defined on any metric space with values in that same space.

Mohamed Aly Hashem Mohamed Sayed

Predicting particle transport in turbulent flows has a plethora of applications, some of which are: the transport of atmospheric aerosols, the deposition of blood cells in the arteries of human bodies and the atomization of fuel droplets in combustion cham ...

Flows of gases and liquids interacting with solid objects are often turbulent within a thin boundary layer. As energy dissipation and momentum transfer are dominated by the boundary layer dynamics, many engineering applications can benefit from an improved ...

Particle dispersion in a periodic channel is studied using the elliptic relaxation hybrid RANS/LES (ER-HRL) model. This approach employs a four-equation linear eddy viscosity (LEV) model while in Reynolds Averaged Navier-Stokes (RANS) mode near the wall, a ...

2021