Modular multiplicative inverseIn mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. In the standard notation of modular arithmetic this congruence is written as which is the shorthand way of writing the statement that m divides (evenly) the quantity ax − 1, or, put another way, the remainder after dividing ax by the integer m is 1.
Discrete logarithmIn mathematics, for given real numbers a and b, the logarithm logb a is a number x such that bx = a. Analogously, in any group G, powers bk can be defined for all integers k, and the discrete logarithm logb a is an integer k such that bk = a. In number theory, the more commonly used term is index: we can write x = indr a (mod m) (read "the index of a to the base r modulo m") for rx ≡ a (mod m) if r is a primitive root of m and gcd(a,m) = 1. Discrete logarithms are quickly computable in a few special cases.
Tower of fieldsIn mathematics, a tower of fields is a sequence of field extensions F0 ⊆ F1 ⊆ ... ⊆ Fn ⊆ ... The name comes from such sequences often being written in the form A tower of fields may be finite or infinite. Q ⊆ R ⊆ C is a finite tower with rational, real and complex numbers. The sequence obtained by letting F0 be the rational numbers Q, and letting (i.e. Fn+1 is obtained from Fn by adjoining a 2n th root of 2) is an infinite tower.
Ramification groupIn number theory, more specifically in local class field theory, the ramification groups are a filtration of the Galois group of a local field extension, which gives detailed information on the ramification phenomena of the extension. In mathematics, the ramification theory of valuations studies the set of extensions of a valuation v of a field K to an extension L of K. It is a generalization of the ramification theory of Dedekind domains. The structure of the set of extensions is known better when L/K is Galois.
Field (mathematics)In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers.
Constructive set theoryAxiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories. In addition to rejecting the principle of excluded middle (), constructive set theories often require some logical quantifiers in their axioms to be set bounded, motivated by results tied to impredicativity.
Multiplicative functionIn number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and whenever a and b are coprime. An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a)f(b) holds for all positive integers a and b, even when they are not coprime.
Characteristic classIn mathematics, a characteristic class is a way of associating to each principal bundle of X a cohomology class of X. The cohomology class measures the extent the bundle is "twisted" and whether it possesses sections. Characteristic classes are global invariants that measure the deviation of a local product structure from a global product structure. They are one of the unifying geometric concepts in algebraic topology, differential geometry, and algebraic geometry.
Minimal polynomial (field theory)In field theory, a branch of mathematics, the minimal polynomial of an element α of a field extension is, roughly speaking, the polynomial of lowest degree having coefficients in the field, such that α is a root of the polynomial. If the minimal polynomial of α exists, it is unique. The coefficient of the highest-degree term in the polynomial is required to be 1. More formally, a minimal polynomial is defined relative to a field extension E/F and an element of the extension field E/F.
Multiplicative orderIn number theory, given a positive integer n and an integer a coprime to n, the multiplicative order of a modulo n is the smallest positive integer k such that . In other words, the multiplicative order of a modulo n is the order of a in the multiplicative group of the units in the ring of the integers modulo n. The order of a modulo n is sometimes written as . The powers of 4 modulo 7 are as follows: The smallest positive integer k such that 4k ≡ 1 (mod 7) is 3, so the order of 4 (mod 7) is 3.