Relational modelThe relational model (RM) is an approach to managing data using a structure and language consistent with first-order predicate logic, first described in 1969 by English computer scientist Edgar F. Codd, where all data is represented in terms of tuples, grouped into relations. A database organized in terms of the relational model is a relational database.
Relational algebraIn database theory, relational algebra is a theory that uses algebraic structures for modeling data, and defining queries on it with a well founded semantics. The theory was introduced by Edgar F. Codd. The main application of relational algebra is to provide a theoretical foundation for relational databases, particularly query languages for such databases, chief among which is SQL. Relational databases store tabular data represented as relations. Queries over relational databases often likewise return tabular data represented as relations.
Object–relational databaseAn object–relational database (ORD), or object–relational database management system (ORDBMS), is a database management system (DBMS) similar to a relational database, but with an object-oriented database model: objects, classes and inheritance are directly supported in database schemas and in the query language. In addition, just as with pure relational systems, it supports extension of the data model with custom data types and methods. An object–relational database can be said to provide a middle ground between relational databases and object-oriented databases.
Tuple relational calculusTuple calculus is a calculus that was created and introduced by Edgar F. Codd as part of the relational model, in order to provide a declarative database-query language for data manipulation in this data model. It formed the inspiration for the database-query languages QUEL and SQL, of which the latter, although far less faithful to the original relational model and calculus, is now the de facto standard database-query language; a dialect of SQL is used by nearly every relational-database-management system.
Software development effort estimationIn software development, effort estimation is the process of predicting the most realistic amount of effort (expressed in terms of person-hours or money) required to develop or maintain software based on incomplete, uncertain and noisy input. Effort estimates may be used as input to project plans, iteration plans, budgets, investment analyses, pricing processes and bidding rounds. Published surveys on estimation practice suggest that expert estimation is the dominant strategy when estimating software development effort.
Estimation theoryEstimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data. An estimator attempts to approximate the unknown parameters using the measurements.
Cost estimation in software engineeringCost estimation in software engineering is typically concerned with the financial spend on the effort to develop and test the software, this can also include requirements review, maintenance, training, managing and buying extra equipment, servers and software. Many methods have been developed for estimating software costs for a given project.
Maximum likelihood estimationIn statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.
Learning rateIn machine learning and statistics, the learning rate is a tuning parameter in an optimization algorithm that determines the step size at each iteration while moving toward a minimum of a loss function. Since it influences to what extent newly acquired information overrides old information, it metaphorically represents the speed at which a machine learning model "learns". In the adaptive control literature, the learning rate is commonly referred to as gain. In setting a learning rate, there is a trade-off between the rate of convergence and overshooting.
EstimationEstimation (or estimating) is the process of finding an estimate or approximation, which is a value that is usable for some purpose even if input data may be incomplete, uncertain, or unstable. The value is nonetheless usable because it is derived from the best information available. Typically, estimation involves "using the value of a statistic derived from a sample to estimate the value of a corresponding population parameter".