Modèle relationnelLe modèle relationnel est une manière de modéliser les relations existantes entre plusieurs informations, et de les ordonner entre elles. Cette modélisation qui repose sur des principes mathématiques mis en avant par E.F. Codd est souvent retranscrite physiquement (« implémentée ») dans une base de données. On appelle « relation » un ensemble d'attributs qui caractérisent une proposition ou une combinaison de propositions comme "un employé a un matricule, il a un nom, il a un employeur".
Algèbre relationnelleL'algèbre relationnelle est un langage de requêtes dans des bases de données relationnelles. L'algèbre relationnelle a été inventée en 1970 par Edgar Frank Codd, le directeur de recherche du centre IBM de San José. Il s'agit de la théorie sous-jacente aux langages de requête des SGBD, comme SQL. Le théorème de Codd dit que l'algèbre relationnelle est équivalente au calcul relationnel (logique du premier ordre sans symbole de fonction). Elle est aussi équivalente à Datalog¬ (Datalog avec la négation) non récursif.
Système de gestion de base de données relationnel-objetUn système de gestion de base de données est un ensemble de logiciels qui servent à manipuler des bases de données. Dans un système de gestion de base de données relationnel-objet (SGBDRO) l'information est représentée sous forme d'objets comme dans la programmation orientée objet. Un SGBDRO rend les objets de la base de données accessibles aux langages orientés-objets comme s'il s'agissait d'objets de ces langages.
Tuple relational calculusTuple calculus is a calculus that was created and introduced by Edgar F. Codd as part of the relational model, in order to provide a declarative database-query language for data manipulation in this data model. It formed the inspiration for the database-query languages QUEL and SQL, of which the latter, although far less faithful to the original relational model and calculus, is now the de facto standard database-query language; a dialect of SQL is used by nearly every relational-database-management system.
Software development effort estimationIn software development, effort estimation is the process of predicting the most realistic amount of effort (expressed in terms of person-hours or money) required to develop or maintain software based on incomplete, uncertain and noisy input. Effort estimates may be used as input to project plans, iteration plans, budgets, investment analyses, pricing processes and bidding rounds. Published surveys on estimation practice suggest that expert estimation is the dominant strategy when estimating software development effort.
Théorie de l'estimationEn statistique, la théorie de l'estimation s'intéresse à l'estimation de paramètres à partir de données empiriques mesurées ayant une composante aléatoire. Les paramètres décrivent un phénomène physique sous-jacent tel que sa valeur affecte la distribution des données mesurées. Un estimateur essaie d'approcher les paramètres inconnus à partir des mesures.
Cost estimation in software engineeringCost estimation in software engineering is typically concerned with the financial spend on the effort to develop and test the software, this can also include requirements review, maintenance, training, managing and buying extra equipment, servers and software. Many methods have been developed for estimating software costs for a given project.
Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Learning rateIn machine learning and statistics, the learning rate is a tuning parameter in an optimization algorithm that determines the step size at each iteration while moving toward a minimum of a loss function. Since it influences to what extent newly acquired information overrides old information, it metaphorically represents the speed at which a machine learning model "learns". In the adaptive control literature, the learning rate is commonly referred to as gain. In setting a learning rate, there is a trade-off between the rate of convergence and overshooting.
ÉvaluationSelon Michel Vial, l'évaluation est le rapport que l'on entretient avec la valeur. L'homme est porteur de valeurs qu'il a reçu plus ou moins consciemment, qu'il convoque pour mesurer la valeur d'objets ou de produits, pour contrôler les procédures (vérifier leur conformité) ou encore interroger (rendre intelligible) le sens de ses pratiques : s'interroger sur la valeur, rendre intelligible les pratiques au moyen de l'évaluation située. Plus généralement, l'évaluation est un processus mental de l'agir humain.