**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Dirac fermions at high-index surfaces of bismuth chalcogenide topological insulator nanostructures

Abstract

Binary bismuth chalcogenides Bi2Se3, Bi2Te3, and related materials are currently being extensively investigated as the reference topological insulators (TIs) due to their simple surface-state band dispersion (single Dirac cone) and relatively large bulk band gaps. Nanostructures of TIs are of particular interest as an increased surface-to-volume ratio enhances the contribution of surfaces states, meaning they are promising candidates for potential device applications. So far, the vast majority of research efforts have focused on the low-energy (0001) surfaces, which correspond to natural cleavage planes in these layered materials. However, the surfaces of low-dimensional nanostructures (nanoplatelets, nanowires, nanoribbons) inevitably involve higher-index facets. We perform a systematic ab initio investigation of the surfaces of bismuth chalcogenide TI nanostructures characterized by different crystallographic orientations, atomic structures and stoichiometric compositions. We find several stable terminations of high-index surfaces, which can be realized at different values of the chemical potential of one of the constituent elements. For the uniquely defined stoichiometric termination, the topological Dirac fermion states are shown to be strongly anisotropic with a clear dependence of Fermi velocities and spin polarization on the surface orientation. Self-doping effects and the presence of topologically trivial mid-gap states are found to characterize the non-stoichiometric surfaces. The results of our study pave the way towards experimental control of topologically protected surface states in bismuth chalcogenide nanostructures.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (7)

Related publications (1)

Surface states

Surface states are electronic states found at the surface of materials. They are formed due to the sharp transition from solid material that ends with a surface and are found only at the atom layers closest to the surface. The termination of a material with a surface leads to a change of the electronic band structure from the bulk material to the vacuum. In the weakened potential at the surface, new electronic states can be formed, so called surface states.

Topological insulator

A topological insulator is a material whose interior behaves as an electrical insulator while its surface behaves as an electrical conductor, meaning that electrons can only move along the surface of the material. A topological insulator is an insulator for the same reason a "trivial" (ordinary) insulator is: there exists an energy gap between the valence and conduction bands of the material. But in a topological insulator, these bands are, in an informal sense, "twisted", relative to a trivial insulator.

Spin polarization

In particle physics, spin polarization is the degree to which the spin, i.e., the intrinsic angular momentum of elementary particles, is aligned with a given direction. This property may pertain to the spin, hence to the magnetic moment, of conduction electrons in ferromagnetic metals, such as iron, giving rise to spin-polarized currents. It may refer to (static) spin waves, preferential correlation of spin orientation with ordered lattices (semiconductors or insulators).

The topology of the electron wavefunctions in certain band insulators can give rise to novel topological phases. Materials harbouring such topological phases are termed topological insulators (TI). A gapped bulk electronic spectrum, described by a topological invariant, and gapless boundary modes, tend to characterize the non-trivial topology. This work describes a theoretical investigation of the Z2 topological insulator phase in Bi2Se3 and Bi2Te3, and the topological crystalline insulator (TCI) phase in SnTe, subject to nanoscale confinement. Specifically, it details the electronic structure, and properties of low-dimensional nanostructures derived from the bulk topological phase. For the bismuth chalcogenides, a first principles methodology is applied to compute the energetics of high-index surfaces, followed by an analysis of the electronic properties of corresponding topological surface state charge carriers. Our calculations find several stable terminations of high-index surfaces, which can be realized at different values of the chemical potential of one of constituent elements. For the uniquely defined stoichiometric termination, the Dirac fermion surface states exhibit a strong anisotropy, with a clear dependence of Fermi velocities and spin polarization on the surface orientation. Non-stoichiometric surfaces undergo self-doping effects, which results in the presence of topologically trivial mid-gap states. These findings guide the construction of Bi2Se3 nanostructures of a nanowire (NW) and nanoribbon (NR) morphology. A tight-binding formalism is utilised to study, firstly, the impact of finite-size effects on the electronic spectrum of each nanostructure. Secondly, the effects of confinement on the topological properties of two-dimensional (2D) Dirac fermion surface states. Quantum confinement around each nanostructure perimeter entails the formation of a series of discrete one-dimensional (1D) sub-bands in the bulk gap. An analysis of how the band gap varies as a function of nanostructure dimensions finds that the dependence is highly sensitive to nanostructure morphology. We reveal a clear correspondence between the spin helicity of the 2D surface Dirac cone and the spin properties of the 1D sub-bands. This is exemplified in the real space spin textures of each nanostructure. For the NW morphology, this correspondence gives rise to an energy dependent spin polarization density. Whereas for the NR morphology the presence of two separate surface types results in a more complex relationship. Finally, via a similar tight-binding formalism, we establish how the crystal-symmetry-dependent topological phases of SnTe (001) thin films are exhibited in lower dimensional nanowires. SnTe (001) thin films, defined by either mirror or glide symmetry, realise distinct 2D TCI phases. As the band dispersion of NWs are characterised by which of these symmetry classes they belong to, we subsequently connect the distinctive NW surface states to the respective parent 2D TCI phase. Lastly, we show that the robust topological protection offered by the mirror symmetry protected 2D TCI phase is manifested in robust surface states of NWs of equivalent symmetry.