**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Orlicz regularity of the gradient of solutions to quasilinear elliptic equations in the plane

Abstract

Given a planar domain Omega, we study the Dirichlet problem {-divA(x, del v) = f in Omega, v = 0 on partial derivative Omega, where the higher-order term is a quasilinear elliptic operator, and f belongs to the Zygmund space L(log L)delta(log log log L)(beta/2) (Omega) with beta >= 0 and delta >= 1/2. We prove that the gradient of the variational solution v is an element of W-0(1,2) (Omega) belongs to the space L-2(log L)(2 delta-1)(log log log L)(beta)(Omega).

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (5)

Omega

Omega (oʊˈmiːɡə,_oʊˈmɛɡə,_oʊˈmeɪɡə,_əˈmiːɡə; capital: Ω, lowercase: ω; Ancient Greek ὦ, later ὦ μέγα, Modern Greek ωμέγα) is the twenty-fourth and final letter in the Greek alphabet. In the Greek numeric system/isopsephy (gematria), it has a value of 800. The word literally means "great O" (ō mega, mega meaning "great"), as opposed to omicron, which means "little O" (o mikron, micron meaning "little").

Calculus of variations

The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations.

Exterior derivative

On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The resulting calculus, known as exterior calculus, allows for a natural, metric-independent generalization of Stokes' theorem, Gauss's theorem, and Green's theorem from vector calculus.