Publication

High Open-Circuit Voltage: Fabrication of Formamidinium Lead Bromide Perovskite Solar Cells Using Fluorene-Dithiophene Derivatives as Hole-Transporting Materials

Abstract

Four different fluorene dithiophene derivative-based hole-transporting materials (HTMs) (SO7-10) have been synthesized via a facile route and were successfully used in the fabrication of formamidinium lead bromide perovskite solar cells. Detailed characterization of the new compounds was carried out through H-1/C-13 NMR spectroscopy, mass spectrometry, ultraviolet visible and photoluminescence spectroscopy, and cyclic voltammetry. Under AM1.5 G illumination, the mesoscopic CH(NH2)(2)PbBr3 perovskite solar cell employing SO7 as the HTM displayed an outstanding photovoltage (V-oc) of 1.5 V with an efficiency (eta) of 7.1%. The photovoltaic performance is on par with the device using the state-of-the-art Spiro-OMeTAD as HTM, which delivered a V-oc, of 1.47 V and a maximum eta of 6.9%. A density functional theory approach with GW simulations including spin-orbit coupling and electrochemical measurements revealed deeper highest occupied molecular orbital levels for newly synthesized fluorene-dithiophene derivatives, which eventually makes them promising HTMs for perovskite solar cells, especially when high photovoltage is desired.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.