Four different fluorene dithiophene derivative-based hole-transporting materials (HTMs) (SO7-10) have been synthesized via a facile route and were successfully used in the fabrication of formamidinium lead bromide perovskite solar cells. Detailed characterization of the new compounds was carried out through H-1/C-13 NMR spectroscopy, mass spectrometry, ultraviolet visible and photoluminescence spectroscopy, and cyclic voltammetry. Under AM1.5 G illumination, the mesoscopic CH(NH2)(2)PbBr3 perovskite solar cell employing SO7 as the HTM displayed an outstanding photovoltage (V-oc) of 1.5 V with an efficiency (eta) of 7.1%. The photovoltaic performance is on par with the device using the state-of-the-art Spiro-OMeTAD as HTM, which delivered a V-oc, of 1.47 V and a maximum eta of 6.9%. A density functional theory approach with GW simulations including spin-orbit coupling and electrochemical measurements revealed deeper highest occupied molecular orbital levels for newly synthesized fluorene-dithiophene derivatives, which eventually makes them promising HTMs for perovskite solar cells, especially when high photovoltage is desired.
Mohammad Khaja Nazeeruddin, Peng Gao, Paramaguru Ganesan
Bin Ding, Xianfu Zhang, Bo Chen, Yan Liu