Circadian rhythmA circadian rhythm (sərˈkeɪdiən), or circadian cycle, is a natural oscillation that repeats roughly every 24 hours. Circadian rhythms can refer to any process that originates within an organism (i.e., endogenous) and responds to the environment (is entrained by the environment). Circadian rhythms are regulated by a circadian clock whose primary function is to rhythmically co-ordinate biological processes so they occur at the correct time to maximise the fitness of an individual.
Circadian clockA circadian clock, or circadian oscillator, is a biochemical oscillator that cycles with a stable phase and is synchronized with solar time. Such a clock's in vivo period is necessarily almost exactly 24 hours (the earth's current solar day). In most living things, internally synchronized circadian clocks make it possible for the organism to anticipate daily environmental changes corresponding with the day–night cycle and adjust its biology and behavior accordingly.
Circadian rhythm sleep disorderCircadian rhythm sleep disorders (CRSD), also known as circadian rhythm sleep-wake disorders (CRSWD), are a family of sleep disorders which affect the timing of sleep. CRSDs arise from a persistent pattern of sleep/wake disturbances that can be caused either by dysfunction in one's biological clock system, or by misalignment between one's endogenous oscillator and externally imposed cues. As a result of this mismatch, those affected by circadian rhythm sleep disorders have a tendency to fall asleep at unconventional time points in the day.
Suprachiasmatic nucleusThe suprachiasmatic nucleus or nuclei (SCN) is a small region of the brain in the hypothalamus, situated directly above the optic chiasm. It is the principal circadian pacemaker in mammals and is necessary for generating circadian rhythms. Reception of light inputs from photosensitive retinal ganglion cells allow the SCN to coordinate the subordinate cellular clocks of the body and entrain to the environment. The neuronal and hormonal activities it generates regulate many different body functions in an approximately 24-hour cycle.
CLOCKCLOCK (from circadian locomotor output cycles kaput) is a gene encoding a basic helix-loop-helix-PAS transcription factor that is known to affect both the persistence and period of circadian rhythms. Research shows that the gene plays a major role as an activator of downstream elements in the pathway critical to the generation of circadian rhythms. The CLOCK gene was first identified in 1997 by Joseph Takahashi and his colleagues.
Bacterial circadian rhythmBacterial circadian rhythms, like other circadian rhythms, are endogenous "biological clocks" that have the following three characteristics: (a) in constant conditions (i.e. constant temperature and either constant light {LL} or constant darkness {DD}) they oscillate with a period that is close to, but not exactly, 24 hours in duration, (b) this "free-running" rhythm is temperature compensated, and (c) the rhythm will entrain to an appropriate environmental cycle. Until the mid-1980s, it was thought that only eukaryotic cells had circadian rhythms.
Light effects on circadian rhythmLight effects on circadian rhythm are the effects that light has on circadian rhythm. Most animals and other organisms have "built-in clocks" in their brains that regulate the timing of biological processes and daily behavior. These "clocks" are known as circadian rhythms. They allow maintenance of these processes and behaviors relative to the 24-hour day/night cycle in nature. Although these rhythms are maintained by the individual organisms, their length does vary somewhat individually.
Phase response curveA phase response curve (PRC) illustrates the transient change (phase response) in the cycle period of an oscillation induced by a perturbation as a function of the phase at which it is received. PRCs are used in various fields; examples of biological oscillations are the heartbeat, circadian rhythms, and the regular, repetitive firing observed in some neurons in the absence of noise. In humans and animals, there is a regulatory system that governs the phase relationship of an organism's internal circadian clock to a regular periodicity in the external environment (usually governed by the solar day).
ChronotypeA chronotype is the behavioral manifestation of underlying circadian rhythm's myriad of physical processes. A person's chronotype is the propensity for the individual to sleep at a particular time during a 24-hour period. Eveningness (delayed sleep period; most active and alert in the evening) and morningness (advanced sleep period; most active and alert in the morning) are the two extremes with most individuals having some flexibility in the timing of their sleep period.
Jet lagJet lag is a physiological condition that results from alterations to the body's circadian rhythms caused by rapid long-distance trans-meridian (east–west or west–east) travel. For example, someone flying from New York to London, i.e. from west to east, feels as if the time were five hours earlier than local time, and someone travelling from London to New York, i.e. from east to west, feels as if the time were five hours later than local time.