Interquartile rangeIn descriptive statistics, the interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the data. The IQR may also be called the midspread, middle 50%, fourth spread, or H‐spread. It is defined as the difference between the 75th and 25th percentiles of the data. To calculate the IQR, the data set is divided into quartiles, or four rank-ordered even parts via linear interpolation. These quartiles are denoted by Q1 (also called the lower quartile), Q2 (the median), and Q3 (also called the upper quartile).
Interquartile meanThe interquartile mean (IQM) (or midmean) is a statistical measure of central tendency based on the truncated mean of the interquartile range. The IQM is very similar to the scoring method used in sports that are evaluated by a panel of judges: discard the lowest and the highest scores; calculate the mean value of the remaining scores. In calculation of the IQM, only the data between the first and third quartiles is used, and the lowest 25% and the highest 25% of the data are discarded. assuming the values have been ordered.
Low (complexity)In computational complexity theory, a language B (or a complexity class B) is said to be low for a complexity class A (with some reasonable relativized version of A) if AB = A; that is, A with an oracle for B is equal to A. Such a statement implies that an abstract machine which solves problems in A achieves no additional power if it is given the ability to solve problems in B at unit cost. In particular, this means that if B is low for A then B is contained in A.
Complexity classIn computational complexity theory, a complexity class is a set of computational problems "of related resource-based complexity". The two most commonly analyzed resources are time and memory. In general, a complexity class is defined in terms of a type of computational problem, a model of computation, and a bounded resource like time or memory. In particular, most complexity classes consist of decision problems that are solvable with a Turing machine, and are differentiated by their time or space (memory) requirements.
Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
QuartileIn statistics, a quartile is a type of quantile which divides the number of data points into four parts, or quarters, of more-or-less equal size. The data must be ordered from smallest to largest to compute quartiles; as such, quartiles are a form of order statistic. The three main quartiles are as follows: The first quartile (Q1) is defined as the middle number between the smallest number (minimum) and the median of the data set. It is also known as the lower quartile, as 25% of the data is below this point.
P (complexity)In computational complexity theory, P, also known as PTIME or DTIME(nO(1)), is a fundamental complexity class. It contains all decision problems that can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time. Cobham's thesis holds that P is the class of computational problems that are "efficiently solvable" or "tractable". This is inexact: in practice, some problems not known to be in P have practical solutions, and some that are in P do not, but this is a useful rule of thumb.
L (complexity)In computational complexity theory, L (also known as LSPACE or DLOGSPACE) is the complexity class containing decision problems that can be solved by a deterministic Turing machine using a logarithmic amount of writable memory space. Formally, the Turing machine has two tapes, one of which encodes the input and can only be read, whereas the other tape has logarithmic size but can be read as well as written. Logarithmic space is sufficient to hold a constant number of pointers into the input and a logarithmic number of boolean flags, and many basic logspace algorithms use the memory in this way.
MidhingeIn statistics, the midhinge is the average of the first and third quartiles and is thus a measure of location. Equivalently, it is the 25% trimmed mid-range or 25% midsummary; it is an L-estimator. The midhinge is related to the interquartile range (IQR), the difference of the third and first quartiles (i.e. ), which is a measure of statistical dispersion. The two are complementary in sense that if one knows the midhinge and the IQR, one can find the first and third quartiles.
Summary statisticsIn descriptive statistics, summary statistics are used to summarize a set of observations, in order to communicate the largest amount of information as simply as possible. Statisticians commonly try to describe the observations in a measure of location, or central tendency, such as the arithmetic mean a measure of statistical dispersion like the standard mean absolute deviation a measure of the shape of the distribution like skewness or kurtosis if more than one variable is measured, a measure of statistical dependence such as a correlation coefficient A common collection of order statistics used as summary statistics are the five-number summary, sometimes extended to a seven-number summary, and the associated box plot.