Lp spaceDISPLAYTITLE:Lp space In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue , although according to the Bourbaki group they were first introduced by Frigyes Riesz . Lp spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces.
Bounded variationIn mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value.
Differential operatorIn mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function (in the style of a higher-order function in computer science). This article considers mainly linear differential operators, which are the most common type. However, non-linear differential operators also exist, such as the Schwarzian derivative.
Elliptic operatorIn the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator. They are defined by the condition that the coefficients of the highest-order derivatives be positive, which implies the key property that the principal symbol is invertible, or equivalently that there are no real characteristic directions. Elliptic operators are typical of potential theory, and they appear frequently in electrostatics and continuum mechanics.
Totally bounded spaceIn topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered by finitely many subsets of every fixed “size” (where the meaning of “size” depends on the structure of the ambient space). The term precompact (or pre-compact) is sometimes used with the same meaning, but precompact is also used to mean relatively compact. These definitions coincide for subsets of a complete metric space, but not in general.
Self-adjoint operatorIn mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product (equivalently, a Hermitian operator in the finite-dimensional case) is a linear map A (from V to itself) that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A^∗. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers.
ExistenceExistence is the ability of an entity to interact with reality. In philosophy, it refers to the ontological property of being. The term existence comes from Old French existence, from Medieval Latin existentia/exsistentia, from Latin existere, to come forth, be manifest, ex + sistere, to stand. Materialism holds that the only things that exist are matter and energy, that all things are composed of material, that all actions require energy, and that all phenomena (including consciousness) are the result of the interaction of matter.
Existence precedes essenceThe proposition that existence precedes essence (l'existence précède l'essence) is a central claim of existentialism, which reverses the traditional philosophical view that the essence (the nature) of a thing is more fundamental and immutable than its existence (the mere fact of its being). To existentialists, human beings—through their consciousness—create their own values and determine a meaning for their life because the human being does not possess any inherent identity or value.
Existence of GodThe existence of God (or more generally, the existence of deities) is a subject of debate in theology, philosophy of religion and popular culture. A wide variety of arguments for and against the existence of God or deities can be categorized as logical, empirical, metaphysical, subjective or scientific. In philosophical terms, the question of the existence of God or deities involves the disciplines of epistemology (the nature and scope of knowledge) and ontology (study of the nature of being or existence) and the theory of value (since some definitions of God include "perfection").
Navier–Stokes equationsThe Navier–Stokes equations (nævˈjeː_stəʊks ) are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842-1850 (Stokes). The Navier–Stokes equations mathematically express momentum balance and conservation of mass for Newtonian fluids.