Dirichlet characterIn analytic number theory and related branches of mathematics, a complex-valued arithmetic function is a Dirichlet character of modulus (where is a positive integer) if for all integers and : that is, is completely multiplicative. (gcd is the greatest common divisor) that is, is periodic with period . The simplest possible character, called the principal character, usually denoted , (see Notation below) exists for all moduli: The German mathematician Peter Gustav Lejeune Dirichlet—for whom the character is named—introduced these functions in his 1837 paper on primes in arithmetic progressions.
L-functionIn mathematics, an L-function is a meromorphic function on the complex plane, associated to one out of several categories of mathematical objects. An L-series is a Dirichlet series, usually convergent on a half-plane, that may give rise to an L-function via analytic continuation. The Riemann zeta function is an example of an L-function, and one important conjecture involving L-functions is the Riemann hypothesis and its generalization. The theory of L-functions has become a very substantial, and still largely conjectural, part of contemporary analytic number theory.
Dirichlet seriesIn mathematics, a Dirichlet series is any series of the form where s is complex, and is a complex sequence. It is a special case of general Dirichlet series. Dirichlet series play a variety of important roles in analytic number theory. The most usually seen definition of the Riemann zeta function is a Dirichlet series, as are the Dirichlet L-functions. It is conjectured that the Selberg class of series obeys the generalized Riemann hypothesis. The series is named in honor of Peter Gustav Lejeune Dirichlet.
Modular formIn mathematics, a modular form is a (complex) analytic function on the upper half-plane that satisfies: a kind of functional equation with respect to the group action of the modular group, and a growth condition. The theory of modular forms therefore belongs to complex analysis. The main importance of the theory is its connections with number theory. Modular forms appear in other areas, such as algebraic topology, sphere packing, and string theory.
Bilinear formIn mathematics, a bilinear form is a bilinear map V × V → K on a vector space V (the elements of which are called vectors) over a field K (the elements of which are called scalars). In other words, a bilinear form is a function B : V × V → K that is linear in each argument separately: B(u + v, w) = B(u, w) + B(v, w) and B(λu, v) = λB(u, v) B(u, v + w) = B(u, v) + B(u, w) and B(u, λv) = λB(u, v) The dot product on is an example of a bilinear form.
Quadratic formIn mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, is a quadratic form in the variables x and y. The coefficients usually belong to a fixed field K, such as the real or complex numbers, and one speaks of a quadratic form over K. If , and the quadratic form equals zero only when all variables are simultaneously zero, then it is a definite quadratic form; otherwise it is an isotropic quadratic form.
Asymptotic analysisIn mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n2. The function f(n) is said to be "asymptotically equivalent to n2, as n → ∞". This is often written symbolically as f (n) ~ n2, which is read as "f(n) is asymptotic to n2".
Asymptotic expansionIn mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion (after Henri Poincaré) is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point. Investigations by revealed that the divergent part of an asymptotic expansion is latently meaningful, i.e. contains information about the exact value of the expanded function.
Bilinear mapIn mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. Let and be three vector spaces over the same base field . A bilinear map is a function such that for all , the map is a linear map from to and for all , the map is a linear map from to In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed.
Degenerate bilinear formIn mathematics, specifically linear algebra, a degenerate bilinear form f (x, y ) on a vector space V is a bilinear form such that the map from V to V∗ (the dual space of V ) given by v ↦ (x ↦ f (x, v )) is not an isomorphism. An equivalent definition when V is finite-dimensional is that it has a non-trivial kernel: there exist some non-zero x in V such that for all A nondegenerate or nonsingular form is a bilinear form that is not degenerate, meaning that is an isomorphism, or equivalently in finite dimensions, if and only if for all implies that .