In mathematics, a bilinear form is a bilinear map V × V → K on a vector space V (the elements of which are called vectors) over a field K (the elements of which are called scalars). In other words, a bilinear form is a function B : V × V → K that is linear in each argument separately:
B(u + v, w) = B(u, w) + B(v, w) and B(λu, v) = λB(u, v)
B(u, v + w) = B(u, v) + B(u, w) and B(u, λv) = λB(u, v)
The dot product on is an example of a bilinear form.
The definition of a bilinear form can be extended to include modules over a ring, with linear maps replaced by module homomorphisms.
When K is the field of complex numbers C, one is often more interested in sesquilinear forms, which are similar to bilinear forms but are conjugate linear in one argument.
Let V be an n-dimensional vector space with basis {e1, ..., en}.
The n × n matrix A, defined by Aij = B(ei, ej) is called the matrix of the bilinear form on the basis {e1, ..., en}.
If the n × 1 matrix x represents a vector x with respect to this basis, and similarly, the n × 1 matrix y represents another vector y, then:
A bilinear form has different matrices on different bases. However, the matrices of a bilinear form on different bases are all congruent. More precisely, if {f1, ..., fn} is another basis of V, then
where the form an invertible matrix S. Then, the matrix of the bilinear form on the new basis is STAS.
Every bilinear form B on V defines a pair of linear maps from V to its dual space V∗. Define B1, B2: V → V∗ by
This is often denoted as
where the dot ( ⋅ ) indicates the slot into which the argument for the resulting linear functional is to be placed (see Currying).
For a finite-dimensional vector space V, if either of B1 or B2 is an isomorphism, then both are, and the bilinear form B is said to be nondegenerate. More concretely, for a finite-dimensional vector space, non-degenerate means that every non-zero element pairs non-trivially with some other element:
for all implies that x = 0 and
for all implies that y = 0.