Summary
In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. Let and be three vector spaces over the same base field . A bilinear map is a function such that for all , the map is a linear map from to and for all , the map is a linear map from to In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed. Such a map satisfies the following properties. For any , The map is additive in both components: if and then and If and we have B(v, w) = B(w, v) for all then we say that B is symmetric. If X is the base field F, then the map is called a bilinear form, which are well-studied (for example: scalar product, inner product, and quadratic form). The definition works without any changes if instead of vector spaces over a field F, we use modules over a commutative ring R. It generalizes to n-ary functions, where the proper term is multilinear. For non-commutative rings R and S, a left R-module M and a right S-module N, a bilinear map is a map B : M × N → T with T an (R, S)-bimodule, and for which any n in N, m ↦ B(m, n) is an R-module homomorphism, and for any m in M, n ↦ B(m, n) is an S-module homomorphism. This satisfies B(r ⋅ m, n) = r ⋅ B(m, n) B(m, n ⋅ s) = B(m, n) ⋅ s for all m in M, n in N, r in R and s in S, as well as B being additive in each argument. An immediate consequence of the definition is that B(v, w) = 0X whenever v = 0V or w = 0W. This may be seen by writing the zero vector 0V as 0 ⋅ 0V (and similarly for 0W) and moving the scalar 0 "outside", in front of B, by linearity. The set L(V, W; X) of all bilinear maps is a linear subspace of the space (viz. vector space, module) of all maps from V × W into X. If V, W, X are finite-dimensional, then so is L(V, W; X).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (1)
Related courses (13)
MATH-115(b): Advanced linear algebra II
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux du sujet.
MATH-506: Topology IV.b - cohomology rings
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
MATH-115(a): Advanced linear algebra II
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.
Show more