Homotopy categoryIn mathematics, the homotopy category is a built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below. More generally, instead of starting with the category of topological spaces, one may start with any and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra.
Model categoryIn mathematics, particularly in homotopy theory, a model category is a with distinguished classes of morphisms ('arrows') called 'weak equivalences', 'fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes ( theory). The concept was introduced by . In recent decades, the language of model categories has been used in some parts of algebraic K-theory and algebraic geometry, where homotopy-theoretic approaches led to deep results.
Quasi-categoryIn mathematics, more specifically , a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a . The study of such generalizations is known as . Quasi-categories were introduced by . André Joyal has much advanced the study of quasi-categories showing that most of the usual basic and some of the advanced notions and theorems have their analogues for quasi-categories.
Monoidal categoryIn mathematics, a monoidal category (or tensor category) is a equipped with a bifunctor that is associative up to a natural isomorphism, and an I that is both a left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant s commute. The ordinary tensor product makes vector spaces, abelian groups, R-modules, or R-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples.
Quillen adjunctionIn homotopy theory, a branch of mathematics, a Quillen adjunction between two C and D is a special kind of adjunction between that induces an adjunction between the Ho(C) and Ho(D) via the total derived functor construction. Quillen adjunctions are named in honor of the mathematician Daniel Quillen. Given two closed model categories C and D, a Quillen adjunction is a pair (F, G): C D of adjoint functors with F left adjoint to G such that F preserves cofibrations and trivial cofibrations or, equivalently by the closed model axioms, such that G preserves fibrations and trivial fibrations.
Higher category theoryIn mathematics, higher category theory is the part of at a higher order, which means that some equalities are replaced by explicit arrows in order to be able to explicitly study the structure behind those equalities. Higher category theory is often applied in algebraic topology (especially in homotopy theory), where one studies algebraic invariants of spaces, such as their fundamental . An ordinary has and morphisms, which are called 1-morphisms in the context of higher category theory.
Weak equivalence (homotopy theory)In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a . A model category is a with classes of morphisms called weak equivalences, fibrations, and cofibrations, satisfying several axioms. The associated of a model category has the same objects, but the morphisms are changed in order to make the weak equivalences into isomorphisms.
Category (mathematics)In mathematics, a category (sometimes called an abstract category to distinguish it from a ) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the , whose objects are sets and whose arrows are functions. is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent.
Category of small categoriesIn mathematics, specifically in , the category of small categories, denoted by Cat, is the whose objects are all and whose morphisms are functors between categories. Cat may actually be regarded as a with natural transformations serving as 2-morphisms. The initial object of Cat is the empty category 0, which is the category of no objects and no morphisms. The terminal object is the terminal category or trivial category 1 with a single object and morphism. The category Cat is itself a , and therefore not an object of itself.
Closed monoidal categoryIn mathematics, especially in , a closed monoidal category (or a monoidal closed category) is a that is both a and a in such a way that the structures are compatible. A classic example is the , Set, where the monoidal product of sets and is the usual cartesian product , and the internal Hom is the set of functions from to . A non- example is the , K-Vect, over a field . Here the monoidal product is the usual tensor product of vector spaces, and the internal Hom is the vector space of linear maps from one vector space to another.