Summary
In mathematics, more specifically , a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a . The study of such generalizations is known as . Quasi-categories were introduced by . André Joyal has much advanced the study of quasi-categories showing that most of the usual basic and some of the advanced notions and theorems have their analogues for quasi-categories. An elaborate treatise of the theory of quasi-categories has been expounded by . Quasi-categories are certain simplicial sets. Like ordinary categories, they contain objects (the 0-simplices of the simplicial set) and morphisms between these objects (1-simplices). But unlike categories, the composition of two morphisms need not be uniquely defined. All the morphisms that can serve as composition of two given morphisms are related to each other by higher order invertible morphisms (2-simplices thought of as "homotopies"). These higher order morphisms can also be composed, but again the composition is well-defined only up to still higher order invertible morphisms, etc. The idea of higher category theory (at least, higher category theory when higher morphisms are invertible) is that, as opposed to the standard notion of a category, there should be a mapping space (rather than a mapping set) between two objects. This suggests that a higher category should simply be a . The model of quasi-categories is, however, better suited to applications than that of topologically enriched categories, though it has been proved by Lurie that the two have natural model structures that are Quillen equivalent. By definition, a quasi-category C is a simplicial set satisfying the inner Kan conditions (also called weak Kan condition): every inner horn in C, namely a map of simplicial sets where , has a filler, that is, an extension to a map . (See Kan fibration#Definitions for a definition of the simplicial sets and .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (47)
Related courses (11)
MATH-436: Homotopical algebra
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
MATH-688: Reading group in applied topology I
The focus of this reading group is to delve into the concept of the "Magnitude of Metric Spaces". This approach offers an alternative approach to persistent homology to describe a metric space across
MATH-211: Group Theory
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
Show more