Concept

Weak equivalence (homotopy theory)

In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a . A model category is a with classes of morphisms called weak equivalences, fibrations, and cofibrations, satisfying several axioms. The associated of a model category has the same objects, but the morphisms are changed in order to make the weak equivalences into isomorphisms. It is a useful observation that the associated homotopy category depends only on the weak equivalences, not on the fibrations and cofibrations. Model categories were defined by Quillen as an axiomatization of homotopy theory that applies to topological spaces, but also to many other categories in algebra and geometry. The example that started the subject is the category of topological spaces with Serre fibrations as fibrations and weak homotopy equivalences as weak equivalences (the cofibrations for this model structure can be described as the retracts of relative cell complexes X ⊆ Y). By definition, a continuous mapping f: X → Y of spaces is called a weak homotopy equivalence if the induced function on sets of path components is bijective, and for every point x in X and every n ≥ 1, the induced homomorphism on homotopy groups is bijective. (For X and Y path-connected, the first condition is automatic, and it suffices to state the second condition for a single point x in X.) For simply connected topological spaces X and Y, a map f: X → Y is a weak homotopy equivalence if and only if the induced homomorphism f*: Hn(X,Z) → Hn(Y,Z) on singular homology groups is bijective for all n. Likewise, for simply connected spaces X and Y, a map f: X → Y is a weak homotopy equivalence if and only if the pullback homomorphism f*: Hn(Y,Z) → Hn(X,Z) on singular cohomology is bijective for all n. Example: Let X be the set of natural numbers {0, 1, 2, ...} and let Y be the set {0} ∪ {1, 1/2, 1/3, ...}, both with the subspace topology from the real line.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
MATH-436: Homotopical algebra
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
MATH-497: Topology IV.b - homotopy theory
We propose an introduction to homotopy theory for topological spaces. We define higher homotopy groups and relate them to homology groups. We introduce (co)fibration sequences, loop spaces, and suspen
MATH-506: Topology IV.b - cohomology rings
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
Show more
Related lectures (60)
Serre model structure: Left and right homotopy
Explores the Serre model structure, focusing on left and right homotopy equivalences.
Quotient Spaces: Three Ways
Explores three ways to form quotient spaces using group actions and equivalence relations.
Homotopy Classes
Covers the concept of homotopy classes and their properties in topology, including short components and group concatenation.
Show more
Related publications (31)

Reduced representations of complexes, signals, and multifiltrations

Celia Camille Hacker

The field of computational topology has developed many powerful tools to describe the shape of data, offering an alternative point of view from classical statistics. This results in a variety of complex structures that are not always directly amenable for ...
EPFL2022

From Trees to Barcodes and Back Again:A Combinatorial, Probabilistic and Geometric Study of a Topological Inverse Problem

Adélie Eliane Garin

In this thesis, we investigate the inverse problem of trees and barcodes from a combinatorial, geometric, probabilistic and statistical point of view.Computing the persistent homology of a merge tree yields a barcode B. Reconstructing a tree from B involve ...
EPFL2022

Quasi-categories vs. Segal spaces: Cartesian edition

Nima Rasekh

We prove that four different ways of defining Cartesian fibrations and the Cartesian model structure are all Quillen equivalent: 1.On marked simplicial sets (due to Lurie [31]), 2.On bisimplicial spaces (due to deBrito [12]), 3.On bisimplicial sets, 4.On m ...
2021
Show more
Related concepts (14)
Model category
In mathematics, particularly in homotopy theory, a model category is a with distinguished classes of morphisms ('arrows') called 'weak equivalences', 'fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes ( theory). The concept was introduced by . In recent decades, the language of model categories has been used in some parts of algebraic K-theory and algebraic geometry, where homotopy-theoretic approaches led to deep results.
Homotopy theory
In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology but nowadays is studied as an independent discipline. Besides algebraic topology, the theory has also been used in other areas of mathematics such as algebraic geometry (e.g., A1 homotopy theory) and (specifically the study of ). In homotopy theory and algebraic topology, the word "space" denotes a topological space.
Postnikov system
In homotopy theory, a branch of algebraic topology, a Postnikov system (or Postnikov tower) is a way of decomposing a topological space's homotopy groups using an inverse system of topological spaces whose homotopy type at degree agrees with the truncated homotopy type of the original space . Postnikov systems were introduced by, and are named after, Mikhail Postnikov. A Postnikov system of a path-connected space is an inverse system of spaces with a sequence of maps compatible with the inverse system such that The map induces an isomorphism for every .
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.