Strict 2-categoryIn , a strict 2-category is a with "morphisms between morphisms", that is, where each hom-set itself carries the structure of a category. It can be formally defined as a category over Cat (the , with the structure given by ). The concept of 2-category was first introduced by Charles Ehresmann in his work on enriched categories in 1965. The more general concept of (or weak 2-category), where composition of morphisms is associative only up to a 2-isomorphism, was introduced in 1968 by Jean Bénabou.
Preadditive categoryIn mathematics, specifically in , a preadditive category is another name for an Ab-category, i.e., a that is over the , Ab. That is, an Ab-category C is a such that every hom-set Hom(A,B) in C has the structure of an abelian group, and composition of morphisms is bilinear, in the sense that composition of morphisms distributes over the group operation. In formulas: and where + is the group operation. Some authors have used the term additive category for preadditive categories, but here we follow the current trend of reserving this term for certain special preadditive categories (see below).
∞-groupoidIn , a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category of simplicial sets (with the standard ). It is an generalization of a groupoid, a category in which every morphism is an isomorphism. The homotopy hypothesis states that ∞-groupoids are equivalent to spaces up to homotopy. Alexander Grothendieck suggested in Pursuing Stacks that there should be an extraordinarily simple model of ∞-groupoids using globular sets, originally called hemispherical complexes.
Monad (category theory)In , a branch of mathematics, a monad (also triple, triad, standard construction and fundamental construction) is a in the of endofunctors of some fixed category. An endofunctor is a functor mapping a category to itself, and a monad is an endofunctor together with two natural transformations required to fulfill certain coherence conditions. Monads are used in the theory of pairs of adjoint functors, and they generalize closure operators on partially ordered sets to arbitrary categories.
Whitehead theoremIn homotopy theory (a branch of mathematics), the Whitehead theorem states that if a continuous mapping f between CW complexes X and Y induces isomorphisms on all homotopy groups, then f is a homotopy equivalence. This result was proved by J. H. C. Whitehead in two landmark papers from 1949, and provides a justification for working with the concept of a CW complex that he introduced there. It is a model result of algebraic topology, in which the behavior of certain algebraic invariants (in this case, homotopy groups) determines a topological property of a mapping.
Additive categoryIn mathematics, specifically in , an additive category is a C admitting all finitary biproducts. There are two equivalent definitions of an additive category: One as a category equipped with additional structure, and another as a category equipped with no extra structure but whose objects and morphisms satisfy certain equations. A category C is preadditive if all its hom-sets are abelian groups and composition of morphisms is bilinear; in other words, C is over the of abelian groups.
Comma categoryIn mathematics, a comma category (a special case being a slice category) is a construction in . It provides another way of looking at morphisms: instead of simply relating objects of a to one another, morphisms become objects in their own right. This notion was introduced in 1963 by F. W. Lawvere (Lawvere, 1963 p. 36), although the technique did not become generally known until many years later. Several mathematical concepts can be treated as comma categories. Comma categories also guarantee the existence of some s and colimits.
Loop spaceIn topology, a branch of mathematics, the loop space ΩX of a pointed topological space X is the space of (based) loops in X, i.e. continuous pointed maps from the pointed circle S1 to X, equipped with the compact-open topology. Two loops can be multiplied by concatenation. With this operation, the loop space is an A∞-space. That is, the multiplication is homotopy-coherently associative. The set of path components of ΩX, i.e. the set of based-homotopy equivalence classes of based loops in X, is a group, the fundamental group π1(X).
Bousfield localizationIn , a branch of mathematics, a (left) Bousfield localization of a replaces the model structure with another model structure with the same cofibrations but with more weak equivalences. Bousfield localization is named after Aldridge Bousfield, who first introduced this technique in the context of localization of topological spaces and spectra. Given a class C of morphisms in a M the left Bousfield localization is a new model structure on the same category as before.
Triangulated categoryIn mathematics, a triangulated category is a with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the of an , as well as the . The exact triangles generalize the short exact sequences in an abelian category, as well as fiber sequences and cofiber sequences in topology. Much of homological algebra is clarified and extended by the language of triangulated categories, an important example being the theory of sheaf cohomology.