Concept

Summary
In homotopy theory (a branch of mathematics), the Whitehead theorem states that if a continuous mapping f between CW complexes X and Y induces isomorphisms on all homotopy groups, then f is a homotopy equivalence. This result was proved by J. H. C. Whitehead in two landmark papers from 1949, and provides a justification for working with the concept of a CW complex that he introduced there. It is a model result of algebraic topology, in which the behavior of certain algebraic invariants (in this case, homotopy groups) determines a topological property of a mapping. In more detail, let X and Y be topological spaces. Given a continuous mapping and a point x in X, consider for any n ≥ 1 the induced homomorphism where πn(X,x) denotes the n-th homotopy group of X with base point x. (For n = 0, π0(X) just means the set of path components of X.) A map f is a weak homotopy equivalence if the function is bijective, and the homomorphisms f* are bijective for all x in X and all n ≥ 1. (For X and Y path-connected, the first condition is automatic, and it suffices to state the second condition for a single point x in X.) The Whitehead theorem states that a weak homotopy equivalence from one CW complex to another is a homotopy equivalence. (That is, the map f: X → Y has a homotopy inverse g: Y → X, which is not at all clear from the assumptions.) This implies the same conclusion for spaces X and Y that are homotopy equivalent to CW complexes. Combining this with the Hurewicz theorem yields a useful corollary: a continuous map between simply connected CW complexes that induces an isomorphism on all integral homology groups is a homotopy equivalence. A word of caution: it is not enough to assume πn(X) is isomorphic to πn(Y) for each n in order to conclude that X and Y are homotopy equivalent. One really needs a map f : X → Y inducing an isomorphism on homotopy groups. For instance, take X= S2 × RP3 and Y= RP2 × S3. Then X and Y have the same fundamental group, namely the cyclic group Z/2, and the same universal cover, namely S2 × S3; thus, they have isomorphic homotopy groups.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Related people

Related units

Related concepts