**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Whitehead theorem

Summary

In homotopy theory (a branch of mathematics), the Whitehead theorem states that if a continuous mapping f between CW complexes X and Y induces isomorphisms on all homotopy groups, then f is a homotopy equivalence. This result was proved by J. H. C. Whitehead in two landmark papers from 1949, and provides a justification for working with the concept of a CW complex that he introduced there. It is a model result of algebraic topology, in which the behavior of certain algebraic invariants (in this case, homotopy groups) determines a topological property of a mapping.
In more detail, let X and Y be topological spaces. Given a continuous mapping
and a point x in X, consider for any n ≥ 1 the induced homomorphism
where πn(X,x) denotes the n-th homotopy group of X with base point x. (For n = 0, π0(X) just means the set of path components of X.) A map f is a weak homotopy equivalence if the function
is bijective, and the homomorphisms f* are bijective for all x in X and all n ≥ 1. (For X and Y path-connected, the first condition is automatic, and it suffices to state the second condition for a single point x in X.) The Whitehead theorem states that a weak homotopy equivalence from one CW complex to another is a homotopy equivalence. (That is, the map f: X → Y has a homotopy inverse g: Y → X, which is not at all clear from the assumptions.) This implies the same conclusion for spaces X and Y that are homotopy equivalent to CW complexes.
Combining this with the Hurewicz theorem yields a useful corollary: a continuous map between simply connected CW complexes that induces an isomorphism on all integral homology groups is a homotopy equivalence.
A word of caution: it is not enough to assume πn(X) is isomorphic to πn(Y) for each n in order to conclude that X and Y are homotopy equivalent. One really needs a map f : X → Y inducing an isomorphism on homotopy groups. For instance, take X= S2 × RP3 and Y= RP2 × S3. Then X and Y have the same fundamental group, namely the cyclic group Z/2, and the same universal cover, namely S2 × S3; thus, they have isomorphic homotopy groups.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related MOOCs

Loading

Related people

Related publications

Related units

Related concepts (5)

Related MOOCs

Related lectures (26)

Related courses (3)

No results

No results

No results

Homotopy group

In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space. To define the n-th homotopy group, the base-point-preserving maps from an n-dimensional sphere (with base point) into a given space (with base point) are collected into equivalence classes, called homotopy classes.

Whitehead theorem

In homotopy theory (a branch of mathematics), the Whitehead theorem states that if a continuous mapping f between CW complexes X and Y induces isomorphisms on all homotopy groups, then f is a homotopy equivalence. This result was proved by J. H. C. Whitehead in two landmark papers from 1949, and provides a justification for working with the concept of a CW complex that he introduced there. It is a model result of algebraic topology, in which the behavior of certain algebraic invariants (in this case, homotopy groups) determines a topological property of a mapping.

CW complex

A CW complex (also called cellular complex or cell complex) is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better properties than simplicial complexes, but still retains a combinatorial nature that allows for computation (often with a much smaller complex). The C stands for "closure-finite", and the W for "weak" topology.

No results

Serre model structure on Top

Explores the Serre model structure on Top, focusing on right and left homotopy.

The Topological Künneth Theorem

Explores the topological Künneth Theorem, emphasizing commutativity and homotopy equivalence in chain complexes.

Cellular Approximation: Homotopy and CW Complexes

Explores the cellular approximation theorem for CW complexes and its implications on homotopy groups.

MATH-506: Topology IV.b - cohomology rings

Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a

MATH-436: Homotopical algebra

This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous

MATH-497: Homotopy theory

We propose an introduction to homotopy theory for topological spaces. We define higher homotopy groups and relate them to homology groups. We introduce (co)fibration sequences, loop spaces, and suspen