Expansion of the universeThe expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion; the universe does not expand "into" anything and does not require space to exist "outside" it. To any observer in the universe, it appears that all but the nearest galaxies (which are bound by gravity) recede at speeds that are proportional to their distance from the observer, on average.
Negative energyNegative energy is a concept used in physics to explain the nature of certain fields, including the gravitational field and various quantum field effects. Gravitational energy Gravitational energy, or gravitational potential energy, is the potential energy a massive object has because it is within a gravitational field. In classical mechanics, two or more masses always have a gravitational potential. Conservation of energy requires that this gravitational field energy is always negative, so that it is zero when the objects are infinitely far apart.
UniverseThe universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. According to this theory, space and time emerged together 13.787billion years ago, and the universe has been expanding ever since the Big Bang. While the spatial size of the entire universe is unknown, it is possible to measure the size of the observable universe, which is approximately 93 billion light-years in diameter at the present day.
Ultimate fate of the universeThe ultimate fate of the universe is a topic in physical cosmology, whose theoretical restrictions allow possible scenarios for the evolution and ultimate fate of the universe to be described and evaluated. Based on available observational evidence, deciding the fate and evolution of the universe has become a valid cosmological question, being beyond the mostly untestable constraints of mythological or theological beliefs.
Static universeIn cosmology, a static universe (also referred to as stationary, infinite, static infinite or static eternal) is a cosmological model in which the universe is both spatially and temporally infinite, and space is neither expanding nor contracting. Such a universe does not have so-called spatial curvature; that is to say that it is 'flat' or Euclidean. A static infinite universe was first proposed by English astronomer Thomas Digges (1546–1595).
Hubble's lawHubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving away from Earth. The velocity of the galaxies has been determined by their redshift, a shift of the light they emit toward the red end of the visible spectrum. Hubble's law is considered the first observational basis for the expansion of the universe, and today it serves as one of the pieces of evidence most often cited in support of the Big Bang model.
Shape of the universeThe shape of the universe, in physical cosmology, is the local and global geometry of the universe. The local features of the geometry of the universe are primarily described by its curvature, whereas the topology of the universe describes general global properties of its shape as a continuous object. The spatial curvature is described by general relativity, which describes how spacetime is curved due to the effect of gravity.
Friedmann equationsThe Friedmann equations are a set of equations in physical cosmology that govern the expansion of space in homogeneous and isotropic models of the universe within the context of general relativity. They were first derived by Alexander Friedmann in 1922 from Einstein's field equations of gravitation for the Friedmann–Lemaître–Robertson–Walker metric and a perfect fluid with a given mass density ρ and pressure p. The equations for negative spatial curvature were given by Friedmann in 1924.
Gravitational energyGravitational energy or gravitational potential energy is the potential energy a massive object has in relation to another massive object due to gravity. It is the potential energy associated with the gravitational field, which is released (converted into kinetic energy) when the objects fall towards each other. Gravitational potential energy increases when two objects are brought further apart. For two pairwise interacting point particles, the gravitational potential energy is given by where and are the masses of the two particles, is the distance between them, and is the gravitational constant.
Future of an expanding universeObservations suggest that the expansion of the universe will continue forever. The prevailing theory is that the universe will cool as it expands, eventually becoming too cold to sustain life. For this reason, this future scenario once popularly called "Heat Death" is now known as the "Big Chill" or "Big Freeze". If dark energy—represented by the cosmological constant, a constant energy density filling space homogeneously, or scalar fields, such as quintessence or moduli, dynamic quantities whose energy density can vary in time and space—accelerates the expansion of the universe, then the space between clusters of galaxies will grow at an increasing rate.