Expansion de l'Universdroite|redresse=1.2|vignette|L'expansion de l'Univers imagée par le gonflement d'un gâteau aux raisins. En cosmologie, l'expansion de l'Univers est le nom du phénomène qui voit à grande échelle les objets composant l'Univers (galaxies, amas...) s'éloigner les uns des autres. Cet écartement mutuel, que l'on pourrait prendre pour un mouvement des galaxies dans l'espace, s'interprète en réalité par un gonflement, une dilatation, de l'espace lui-même, les objets célestes étant de ce fait amenés à s'éloigner les uns des autres.
Negative energyNegative energy is a concept used in physics to explain the nature of certain fields, including the gravitational field and various quantum field effects. Gravitational energy Gravitational energy, or gravitational potential energy, is the potential energy a massive object has because it is within a gravitational field. In classical mechanics, two or more masses always have a gravitational potential. Conservation of energy requires that this gravitational field energy is always negative, so that it is zero when the objects are infinitely far apart.
Universvignette|redresse=1.8|Représentation à l'échelle logarithmique de l'Univers observable. Au centre figure le Système solaire et, à mesure qu'on s'en éloigne, les étoiles proches, le bras de Persée, la Voie lactée, les galaxies proches, le réseau des structures à grande échelle, le fond diffus cosmologique et, à la périphérie, le plasma invisible du Big Bang. L'Univers, au sens cosmologique, est l'ensemble de tout ce qui existe, décrit à partir d'observations scientifiques et régi par des lois physiques.
Destin de l'Universvignette|alt=Une animation du comportement supposé d'un Big Crunch.|Une animation du comportement supposé d'un Big Crunch. La question du destin de l'Univers fait partie des questions fondamentales de la cosmologie. Elle a trait à l'évolution future de l'expansion de l'Univers. Pendant longtemps elle a été focalisée sur la question de savoir si l'expansion observée actuellement se poursuivrait indéfiniment, ou bien s'interromprait pour laisser place à une phase de contraction menant au Big Crunch, un effondrement général de l'Univers, analogiquement inverse du Big Bang.
Univers d'EinsteinL' est le premier modèle cosmologique fondé sur la théorie de la relativité générale découverte par Albert Einstein en 1915. Le modèle a été proposé par Einstein lui-même en 1917, mais a été abandonné à la suite de la découverte de l'expansion de l'Univers. L'Univers ainsi modélisé est statique et fermé, de courbure positive, dont la géométrie est celle d'une hypersphère, contenant une distribution homogène et isotrope de poussière de densité d'énergie propre , ainsi qu'une constante cosmologique , telle que : où est la constante de Newton et est la vitesse de la lumière dans le vide.
Loi de Hubble-LemaîtreEn astronomie, la loi de Hubble-Lemaître (anciennement loi de Hubble) énonce que les galaxies s'éloignent les unes des autres à une vitesse approximativement proportionnelle à leur distance. Autrement dit, plus une galaxie est loin de nous, plus elle semble s'éloigner rapidement. Cette loi ne concerne que la partie de l'univers accessible aux observations. L'extrapolation de la loi de Hubble-Lemaître sur des distances plus grandes est possible, mais uniquement si l'univers demeure homogène et isotrope sur de plus grandes distances.
Forme de l'Universthumb|Les trois formes possibles de l'Univers (voir l'article courbure spatiale). Le modèle le plus probable en 2016 est celui de l'Univers plat. Le terme "forme de l'Univers", en cosmologie, désigne généralement soit la forme (la courbure et la topologie) d'une section spatiale de l'Univers (« forme de l'espace-temps »), soit, de façon plus générale, la forme de l'espace-temps tout entier. Selon les observations astronomiques, l'Univers apparaît plat, avec toutefois une marge d'erreur de 0,4 %.
Équations de FriedmannLes équations de Friedmann-Lemaître sont les équations de la relativité générale (appelées équations d'Einstein) écrites dans le contexte d'un modèle cosmologique homogène et isotrope, ce dernier étant représenté par une métrique de Robertson-Walker. Elles régissent donc l'évolution du taux d'expansion de l'Univers et par suite de la distance entre deux astres lointains (le facteur d'échelle) et en fonction du temps appelé dans ce contexte temps cosmique.
Énergie potentielle gravitationnelleEn physique classique, l'énergie potentielle gravitationnelle ou énergie potentielle de pesanteur est l'énergie que possède un corps du fait de sa position dans un champ gravitationnel. Son interprétation la plus naturelle est liée au travail qu'il faut fournir pour déplacer un objet plongé dans un champ gravitationnel. Comme pour toute énergie, son unité dans le Système international est le joule (J). L'énergie potentielle gravitationnelle est, comme toutes les formes d'énergies potentielles, définie à une constante additive arbitraire près.
Futur d'un univers en expansionLes observations suggèrent que l’expansion de l’univers va se poursuivre à l’infini. Si tel est le cas, alors il existe une théorie populaire selon laquelle l’univers se refroidira en s’étendant, si bien qu’il deviendra trop froid pour assurer la vie. Pour cette raison, ce scénario futur est communément appelé le « Big Freeze ».