Exciton-assisted optomechanics with suspended carbon nanotubes
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This thesis uses femtosecond laser spectroscopy in studying strong correlation in condensed matters that are pertinent to future technology: a wide bandgap perovskite and a quantum material, with the employment of ultrafast time-resolved spectroscopy in th ...
Over the past decade, quantum photonics platforms aiming at harnessing the fundamental properties of single particles, such as quantum superposition and quantum entanglement, have flourished. In this context, single-photon emitters capable of operating at ...
Providing an additional degree of freedom for binary information encoding and nonreciprocal information transmission, chiral single photons have become a new research frontier in quantum optics. Without using complex external conditions (e.g., magnetic fie ...
The growing field of pulsed electron microscopy (PEM) currently suffers from technical challenges, many of which are related to the inefficiency of present pulsed emitters. In this research, we explore semiconductor photoemitters as a replacement of conven ...
GaN exhibits a decomposition tendency for temperatures far below its melting point and common growth temperatures used in metal-organic vapour phase epitaxy (MOVPE).This characteristic is known to be a major obstacle for realising GaN bulk substrate. There ...
Our understanding of quantum materials is commonly based on precise determinations of their electronic spectrum by spectroscopic means, most notably angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy. Both require atomicall ...
Hot exciton materials have the potential to improve the quantum efficiency of organic light-emitting diodes (OLEDs) by promoting high reversed intersystem crossing (hRISC) between a high-lying triplet (T-n, n >= 2) and a radiative singlet (S-m). In recent ...
Over the past decade, lead halide perovskites (LHPs) have received considerable attention thanks to their impressive optoelectronic properties. Today, LHP-based devices are one of the most efficient single-junction solar cells, with power-conversion effici ...
Deep defects have a fundamental role in determining the electro-optical characteristics and in the efficiency of InGaN light-emitting diodes (LEDs). However, modeling their effect on the electrical characteristics of the LED is not straightforward. In this ...
Modern solid-state devices were made possible by the discovery of semiconductor heterostructures. Heterostructures offer the ability to fabricate low-dimensional nanostructures such as quantum dots which can restrain carriers in all three-directions. Quant ...