Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The paper proposes a variant of sesqui-pushout rewriting (SqPO) that allows one to develop the theory of nested application conditions (NACs) for arbitrary rule spans; this is a considerable generalisation compared with existing results for NACs, which only hold for linear rules (w.r.t. a suitable class of monos). Besides this main contribution, namely an adapted shifting construction for NACs, the paper presents a uniform commutativity result for a revised notion of independence that applies to arbitrary rules; these theorems hold in any category with (enough) stable pushouts and a class of monos rendering it weak adhesive HLR. To illustrate results and concepts, we use simple graphs, i.e. the category of binary endorelations and relation preserving functions, as it is a paradigmatic example of a category with stable pushouts; moreover, using regular monos to give semantics to NACs, we can shift NACs over arbitrary rule spans.