Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In fluid mechanics, turbulence can occur in very simple flow geometries, for Newtonian fluids and without the need for additional flow conditions such as temperature gradients or chemical reactions. In standard cases, intuitive assumptions on the physics o ...
We present non-linear self-consistent 3D global fluid simulations of the SOL plasma dynamics using the Global Braginskii Solver (GBS) code. The code solves the drift-reduced Braginkii equations in a collisional plasma, with cold ions. The GBS code, origina ...
In nuclear safety, most severe accident scenarios lead to the presence of fission products in aerosol form in the closed containment atmosphere. It is important to understand the particle depletion process to estimate the risk of a release of radioactivity ...
We present non-linear self-consistent global simulations of the SOL plasma dynamics using the Global Braginskii Solver (GBS) code. The code solves on the drift-reduced Braginkii equations, with cold ions. Studied originally for the simulation of the Simple ...
Flows through pipes and channels are the most common means to transport fluids in practical applications and equally occur in numerous natural systems. In general, the transfer of fluids is energetically far more efficient if the motion is smooth and lamin ...
Experiments on grid turbulence are reported for pure water and dilute Polyox WSR 301 solutions. A novel passive grid, which consists of a square mesh grid with tethered spheres, has been developed to enhance the turbulence properties. In pure water the new ...
Three-dimensional fluid simulations are performed in a simple magnetized toroidal plasma, in which vertical and toroidal magnetic fields create helicoidal magnetic field lines that terminate on the torus vessel. The simulations are carried out in the three ...
Current capabilities of Large-Eddy Simulation (LES) in Eulerian-Lagrangian studies of dispersed flows are limited by the modeling of the Sub-Grid Scale (SGS) turbulence effects on particle dynamics. These effects should be taken into account in order to re ...
In this work we focus on the modeling and numerical simulation of the fluid-structure interaction mechanism in vascular dynamics. We first propose a simple membrane model to describe the deformation of the arterial wall, which is derived from the Koiter sh ...
The research work reported in the present dissertation is aimed at the analysis of complex physical phenomena involving instabilities and nonlinearities occurring in fluids through state-of-the-art numerical modeling. Solutions of intricate fluid physics p ...