Scaled correlationIn statistics, scaled correlation is a form of a coefficient of correlation applicable to data that have a temporal component such as time series. It is the average short-term correlation. If the signals have multiple components (slow and fast), scaled coefficient of correlation can be computed only for the fast components of the signals, ignoring the contributions of the slow components. This filtering-like operation has the advantages of not having to make assumptions about the sinusoidal nature of the signals.
Computational physicsComputational physics is the study and implementation of numerical analysis to solve problems in physics. Historically, computational physics was the first application of modern computers in science, and is now a subset of computational science. It is sometimes regarded as a subdiscipline (or offshoot) of theoretical physics, but others consider it an intermediate branch between theoretical and experimental physics - an area of study which supplements both theory and experiment.
Collective actionCollective action refers to action taken together by a group of people whose goal is to enhance their condition and achieve a common objective. It is a term that has formulations and theories in many areas of the social sciences including psychology, sociology, anthropology, political science and economics. Researchers Martijn van Zomeren, Tom Postmes, and Russell Spears conducted a meta-analysis of over 180 studies of collective action, in an attempt to integrate three dominant socio-psychological perspectives explaining antecedent conditions to this phenomenon – injustice, efficacy, and identity.
Conformational entropyIn chemical thermodynamics, conformational entropy is the entropy associated with the number of conformations of a molecule. The concept is most commonly applied to biological macromolecules such as proteins and RNA, but also be used for polysaccharides and other molecules. To calculate the conformational entropy, the possible conformations of the molecule may first be discretized into a finite number of states, usually characterized by unique combinations of certain structural parameters, each of which has been assigned an energy.
Reaction coordinateIn chemistry, a reaction coordinate is an abstract one-dimensional coordinate which represents progress along a reaction pathway. It is usually a geometric parameter that changes during the conversion of one or more molecular entities. In molecular dynamics simulations, a reaction coordinate is called collective variable. These coordinates can sometimes represent a real coordinate system (such as bond length, bond angle...), although, for more complex reactions especially, this can be difficult (and non geometric parameters are used, e.
Collective action problemA collective action problem or social dilemma is a situation in which all individuals would be better off cooperating but fail to do so because of conflicting interests between individuals that discourage joint action. The collective action problem has been addressed in political philosophy for centuries, but was most clearly established in 1965 in Mancur Olson's The Logic of Collective Action. Problems arise when too many group members choose to pursue individual profit and immediate satisfaction rather than behave in the group's best long-term interests.
Residual entropyResidual entropy is the difference in entropy between a non-equilibrium state and crystal state of a substance close to absolute zero. This term is used in condensed matter physics to describe the entropy at zero kelvin of a glass or plastic crystal referred to the crystal state, whose entropy is zero according to the third law of thermodynamics. It occurs if a material can exist in many different states when cooled. The most common non-equilibrium state is vitreous state, glass.
Entropy (order and disorder)In thermodynamics, entropy is often associated with the amount of order or disorder in a thermodynamic system. This stems from Rudolf Clausius' 1862 assertion that any thermodynamic process always "admits to being reduced [reduction] to the alteration in some way or another of the arrangement of the constituent parts of the working body" and that internal work associated with these alterations is quantified energetically by a measure of "entropy" change, according to the following differential expression: where Q = motional energy (“heat”) that is transferred reversibly to the system from the surroundings and T = the absolute temperature at which the transfer occurs.