Publication

Walking, Weak first-order transitions, and Complex CFTs II. Two-dimensional Potts model at Q > 4

Victor Gorbenko, Bernardo Zan
2018
Journal paper
Abstract

We study complex CFTs describing fixed points of the two-dimensional Q-state Potts model with Q > 4. Their existence is closely related to the weak first-order phase transition and the "walking" renormalization group (RG) behavior present in the real Potts model at Q > 4. The Potts model, apart from its own significance, serves as an ideal playground for testing this very general relation. Cluster formulation provides nonperturbative definition for a continuous range of parameter Q, while Coulomb gas description and connection to minimal models provide some conformal data of the complex CFTs. We use one and two-loop conformal perturbation theory around complex CFTs to compute various properties of the real walking RG flow. These properties, such as drifting scaling dimensions, appear to be common features of the QFTs with walking RG flows, and can serve as a smoking gun for detecting walking in Monte Carlo simulations. The complex CFTs discussed in this work are perfectly well defined, and can in principle be seen in Monte Carlo simulations with complexified coupling constants. In particular, we predict a pair of S-5-symmetric complex CFTs with central charges c approximate to 1.138 +/- 0.021i describing the fixed points of a 5-state dilute Potts model with complexified temperature and vacancy fugacity. Copyright V. Gorbenko et al.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (33)
Potts model
In statistical mechanics, the Potts model, a generalization of the Ising model, is a model of interacting spins on a crystalline lattice. By studying the Potts model, one may gain insight into the behaviour of ferromagnets and certain other phenomena of solid-state physics. The strength of the Potts model is not so much that it models these physical systems well; it is rather that the one-dimensional case is exactly solvable, and that it has a rich mathematical formulation that has been studied extensively.
Two-dimensional conformal field theory
A two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invariant under local conformal transformations. In contrast to other types of conformal field theories, two-dimensional conformal field theories have infinite-dimensional symmetry algebras. In some cases, this allows them to be solved exactly, using the conformal bootstrap method. Notable two-dimensional conformal field theories include minimal models, Liouville theory, massless free bosonic theories, Wess–Zumino–Witten models, and certain sigma models.
Ising model
The Ising model (ˈiːzɪŋ) (or Lenz-Ising model or Ising-Lenz model), named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that represent magnetic dipole moments of atomic "spins" that can be in one of two states (+1 or −1). The spins are arranged in a graph, usually a lattice (where the local structure repeats periodically in all directions), allowing each spin to interact with its neighbors.
Show more
Related publications (46)

Null energy constraints on two-dimensional RG flows

Grégoire Olivier Mathys

We study applications of spectral positivity and the averaged null energy condition (ANEC) to renormalization group (RG) flows in two-dimensional quantum field theory. We find a succinct new proof of the Zamolodchikov c-theorem, and derive further independ ...
New York2024

Phase diagram of the J-Jd Heisenberg model on the maple leaf lattice: Neural networks and density matrix renormalization group

Pratyay Ghosh, Ronny Thomale

We microscopically analyze the nearest-neighbor Heisenberg model on the maple leaf lattice through neural quantum state (NQS) and infinite density matrix renormalization group (iDMRG) methods. Embarking to parameter regimes beyond the exact dimer singlet g ...
Amer Physical Soc2024

Nonperturbative aspects of scattering amplitudes

Miguel Alexandre Ribeiro Correia

In this thesis we study how physical principles imposed on the S-matrix, such as Lorentz invariance, unitarity, crossing symmetry and analyticity constrain quantum field theories at the nonperturbative level. We start with a pedagogical introduction to the ...
EPFL2023
Show more