Potts modelIn statistical mechanics, the Potts model, a generalization of the Ising model, is a model of interacting spins on a crystalline lattice. By studying the Potts model, one may gain insight into the behaviour of ferromagnets and certain other phenomena of solid-state physics. The strength of the Potts model is not so much that it models these physical systems well; it is rather that the one-dimensional case is exactly solvable, and that it has a rich mathematical formulation that has been studied extensively.
Two-dimensional conformal field theoryA two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invariant under local conformal transformations. In contrast to other types of conformal field theories, two-dimensional conformal field theories have infinite-dimensional symmetry algebras. In some cases, this allows them to be solved exactly, using the conformal bootstrap method. Notable two-dimensional conformal field theories include minimal models, Liouville theory, massless free bosonic theories, Wess–Zumino–Witten models, and certain sigma models.
Ising modelThe Ising model (ˈiːzɪŋ) (or Lenz-Ising model or Ising-Lenz model), named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that represent magnetic dipole moments of atomic "spins" that can be in one of two states (+1 or −1). The spins are arranged in a graph, usually a lattice (where the local structure repeats periodically in all directions), allowing each spin to interact with its neighbors.
RenormalizationRenormalization is a collection of techniques in quantum field theory, statistical field theory, and the theory of self-similar geometric structures, that are used to treat infinities arising in calculated quantities by altering values of these quantities to compensate for effects of their self-interactions. But even if no infinities arose in loop diagrams in quantum field theory, it could be shown that it would be necessary to renormalize the mass and fields appearing in the original Lagrangian.
Coordination complexA coordination complex is a chemical compound consisting of a central atom or ion, which is usually metallic and is called the coordination centre, and a surrounding array of bound molecules or ions, that are in turn known as ligands or complexing agents. Many metal-containing compounds, especially those that include transition metals (elements like titanium that belong to the periodic table's d-block), are coordination complexes. Coordination complexes are so pervasive that their structures and reactions are described in many ways, sometimes confusingly.
Lattice model (physics)In mathematical physics, a lattice model is a mathematical model of a physical system that is defined on a lattice, as opposed to a continuum, such as the continuum of space or spacetime. Lattice models originally occurred in the context of condensed matter physics, where the atoms of a crystal automatically form a lattice. Currently, lattice models are quite popular in theoretical physics, for many reasons. Some models are exactly solvable, and thus offer insight into physics beyond what can be learned from perturbation theory.
Minimal model (physics)In theoretical physics, a minimal model or Virasoro minimal model is a two-dimensional conformal field theory whose spectrum is built from finitely many irreducible representations of the Virasoro algebra. Minimal models have been classified and solved, and found to obey an ADE classification. The term minimal model can also refer to a rational CFT based on an algebra that is larger than the Virasoro algebra, such as a W-algebra. In minimal models, the central charge of the Virasoro algebra takes values of the type where are coprime integers such that .
Quantum field theoryIn theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called quanta) of their underlying quantum fields, which are more fundamental than the particles.
Renormalization groupIn theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying force laws (codified in a quantum field theory) as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle. A change in scale is called a scale transformation.
Random cluster modelIn statistical mechanics, probability theory, graph theory, etc. the random cluster model is a random graph that generalizes and unifies the Ising model, Potts model, and percolation model. It is used to study random combinatorial structures, electrical networks, etc. It is also referred to as the RC model or sometimes the FK representation after its founders Cees Fortuin and Piet Kasteleyn. Let be a graph, and be a bond configuration on the graph that maps each edge to a value of either 0 or 1.