Maximizing nuclear hyperpolarization in pulse cooling under MAS
Related publications (37)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Nuclear magnetic resonance (NMR) was discovered in the first half of the 20th century. Today, neither analytical chemistry without NMR spectroscopy nor medical diagnostics without magnetic resonance imaging (MRI) could be imagined. A magnetic resonance sig ...
Nuclear Magnetic Resonance (NMR) has become an inescapable technique for spectroscopic identification. Its main advantage comes from the sensitivity of NMR active nuclei embedded in a molecule to their chemical environment. NMR is also used daily in medica ...
Relaxation processes induced by the antisymmetric part of the chemical shift anisotropy tensor (henceforth called anti-CSA) are usually neglected in NMR relaxation studies. It is shown here that anti-CSA components contribute to longitudinal relaxation rat ...
Since the introduction 10 years ago of the dissolution method, Dynamic Nuclear Polarization (DNP) became a widely applied and powerful technique to enhance nuclear magnetic resonance (NMR) signals of low naturally abundant, insensitive nuclear spins for an ...
The transverse relaxation rates R (2) = 1/T (2) of protons can be determined by spin-echo sequences with multiple refocusing pulses using moderate radio-frequency field strengths and properly chosen inter-pulse delays so as to suppress echo modulations due ...
Sensitivity in Nuclear Magnetic Resonance (NMR), especially in solid-state NMR, has always been a challenging and important issue and thus a motivation for new developments. The magnetic field B0, the gyromagnetic ratios of the observed nuclei, as well as ...
Dissolution dynamic nuclear polarization (DNP) provides a way to tremendously improve the sensitivity of nuclear magnetic resonance experiments. Once the spins are hyperpolarized by dissolution DNP, the radicals used as polarizing agents become undesirable ...
A double-zero quantum (DZQ)-refocused INADEQUATE experiment is introduced for J-based NMR correlations under ultra-fast (60 kHz) magic angle spinning (MAS). The experiment records two spectra in the same dataset, a double quantumsingle quantum (DQ-SQ) and ...
A series of 37 dinitroxide biradicals have been prepared and their performance studied as polarizing agents in cross-effect DNP NMR experiments at 9.4 T and 100 K in 1,1,2,2-tetrachloroethane (TCE). We observe that in this regime the DNP performance is str ...
We show that dynamic nuclear polarization (DNP) can be used to enhance NMR signals of C-13 and Si-29 nuclei located in mesoporous organic/inorganic hybrid materials, at several hundreds of nanometers from stable radicals (TOTAPOL) trapped in the surroundin ...