Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
N-body simulationIn physics and astronomy, an N-body simulation is a simulation of a dynamical system of particles, usually under the influence of physical forces, such as gravity (see n-body problem for other applications). N-body simulations are widely used tools in astrophysics, from investigating the dynamics of few-body systems like the Earth-Moon-Sun system to understanding the evolution of the large-scale structure of the universe.
Precision tests of QEDQuantum electrodynamics (QED), a relativistic quantum field theory of electrodynamics, is among the most stringently tested theories in physics. The most precise and specific tests of QED consist of measurements of the electromagnetic fine-structure constant, α, in various physical systems. Checking the consistency of such measurements tests the theory. Tests of a theory are normally carried out by comparing experimental results to theoretical predictions.
Homogeneity (physics)In physics, a homogeneous material or system has the same properties at every point; it is uniform without irregularities. A uniform electric field (which has the same strength and the same direction at each point) would be compatible with homogeneity (all points experience the same physics). A material constructed with different constituents can be described as effectively homogeneous in the electromagnetic materials domain, when interacting with a directed radiation field (light, microwave frequencies, etc.
Theoretical astronomyTheoretical astronomy is the use of analytical and computational models based on principles from physics and chemistry to describe and explain astronomical objects and astronomical phenomena. Theorists in astronomy endeavor to create theoretical models and from the results predict observational consequences of those models. The observation of a phenomenon predicted by a model allows astronomers to select between several alternate or conflicting models as the one best able to describe the phenomena.
Freeman DysonFreeman John Dyson (15 December 1923 – 28 February 2020) was a British-American theoretical physicist and mathematician known for his works in quantum field theory, astrophysics, random matrices, mathematical formulation of quantum mechanics, condensed matter physics, nuclear physics, and engineering. He was professor emeritus in the Institute for Advanced Study in Princeton and a member of the board of sponsors of the Bulletin of the Atomic Scientists.
Schwinger's quantum action principleThe Schwinger's quantum action principle is a variational approach to quantum mechanics and quantum field theory. This theory was introduced by Julian Schwinger in a series of articles starting 1950. In Schwingers approach, the action principle is targeted towards quantum mechanics. The action becomes a quantum action, i.e. an operator, . Although it is superficially different from the path integral formulation where the action is a classical function, the modern formulation of the two formalisms are identical.
Operator product expansionIn quantum field theory, the operator product expansion (OPE) is used as an axiom to define the product of fields as a sum over the same fields. As an axiom, it offers a non-perturbative approach to quantum field theory. One example is the vertex operator algebra, which has been used to construct two-dimensional conformal field theories. Whether this result can be extended to QFT in general, thus resolving many of the difficulties of a perturbative approach, remains an open research question.
Laplace's methodIn mathematics, Laplace's method, named after Pierre-Simon Laplace, is a technique used to approximate integrals of the form where is a twice-differentiable function, M is a large number, and the endpoints a and b could possibly be infinite. This technique was originally presented in . In Bayesian statistics, Laplace's approximation can refer to either approximating the posterior normalizing constant with Laplace's method or approximating the posterior distribution with a Gaussian centered at the maximum a posteriori estimate.