Fundamental interactionIn physics, the fundamental interactions or fundamental forces are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: gravity electromagnetism weak interaction strong interaction The gravitational and electromagnetic interactions produce long-range forces whose effects can be seen directly in everyday life. The strong and weak interactions produce forces at minuscule, subatomic distances and govern nuclear interactions inside atoms.
Yukawa potentialIn particle, atomic and condensed matter physics, a Yukawa potential (also called a screened Coulomb potential) is a potential named after the Japanese physicist Hideki Yukawa. The potential is of the form: where is a magnitude scaling constant, i.e. is the amplitude of potential, m is the mass of the particle, r is the radial distance to the particle, and α is another scaling constant, so that is the approximate range. The potential is monotonically increasing in r and it is negative, implying the force is attractive.
NeutrinoA neutrino (njuːˈtriːnoʊ ; denoted by the Greek letter ν) is a fermion (an elementary particle with spin of 1 /2) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles excluding massless particles.
Electroweak interactionIn particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the unification energy, on the order of 246 GeV, they would merge into a single force.
Gauge anomalyIn theoretical physics, a gauge anomaly is an example of an anomaly: it is a feature of quantum mechanics—usually a one-loop diagram—that invalidates the gauge symmetry of a quantum field theory; i.e. of a gauge theory. All gauge anomalies must cancel out. Anomalies in gauge symmetries lead to an inconsistency, since a gauge symmetry is required in order to cancel degrees of freedom with a negative norm which are unphysical (such as a photon polarized in the time direction). Indeed, cancellation occurs in the Standard Model.
GluonA gluon (ˈɡluːɒn ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind quarks together, forming hadrons such as protons and neutrons. Gluons are vector gauge bosons that mediate strong interactions of quarks in quantum chromodynamics (QCD). Gluons themselves carry the color charge of the strong interaction.
Gauge bosonIn particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles, whose interactions are described by a gauge theory, interact with each other by the exchange of gauge bosons, usually as virtual particles. Photons, W and Z bosons, and gluons are gauge bosons. All known gauge bosons have a spin of 1; for comparison, the Higgs boson has spin zero and the hypothetical graviton has a spin of 2. Therefore, all known gauge bosons are vector bosons.
Experimental physicsExperimental physics is the category of disciplines and sub-disciplines in the field of physics that are concerned with the observation of physical phenomena and experiments. Methods vary from discipline to discipline, from simple experiments and observations, such as Galileo's experiments, to more complicated ones, such as the Large Hadron Collider. Experimental physics is a branch of physics that is concerned with data acquisition, data-acquisition methods, and the detailed conceptualization (beyond simple thought experiments) and realization of laboratory experiments.
Top quarkThe top quark, sometimes also referred to as the truth quark, (symbol: t) is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs Boson. This coupling is very close to unity; in the Standard Model of particle physics, it is the largest (strongest) coupling at the scale of the weak interactions and above. The top quark was discovered in 1995 by the CDF and DØ experiments at Fermilab.
Supersymmetric gauge theoryIn theoretical physics, there are many theories with supersymmetry (SUSY) which also have internal gauge symmetries. Supersymmetric gauge theory generalizes this notion. A gauge theory is a field theory with gauge symmetry. Roughly, there are two types of symmetries, global and local. A global symmetry is a symmetry applied uniformly (in some sense) to each point of a manifold. A local symmetry is a symmetry which is position dependent.