Summary
In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles, whose interactions are described by a gauge theory, interact with each other by the exchange of gauge bosons, usually as virtual particles. Photons, W and Z bosons, and gluons are gauge bosons. All known gauge bosons have a spin of 1; for comparison, the Higgs boson has spin zero and the hypothetical graviton has a spin of 2. Therefore, all known gauge bosons are vector bosons. Gauge bosons are different from the other kinds of bosons: first, fundamental scalar bosons (the Higgs boson); second, mesons, which are composite bosons, made of quarks; third, larger composite, non-force-carrying bosons, such as certain atoms. The Standard Model of particle physics recognizes four kinds of gauge bosons: photons, which carry the electromagnetic interaction; W and Z bosons, which carry the weak interaction; and gluons, which carry the strong interaction. Isolated gluons do not occur because they are colour-charged and subject to colour confinement. In a quantized gauge theory, gauge bosons are quanta of the gauge fields. Consequently, there are as many gauge bosons as there are generators of the gauge field. In quantum electrodynamics, the gauge group is U(1); in this simple case, there is only one gauge boson, the photon. In quantum chromodynamics, the more complicated group SU(3) has eight generators, corresponding to the eight gluons. The three W and Z bosons correspond (roughly) to the three generators of SU(2) in electroweak theory. Gauge invariance requires that gauge bosons are described mathematically by field equations for massless particles. Otherwise, the mass terms add non-zero additional terms to the Lagrangian under gauge transformations, violating gauge symmetry. Therefore, at a naïve theoretical level, all gauge bosons are required to be massless, and the forces that they describe are required to be long-ranged.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.