Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
How can a renormalization group fixed point be scale invariant without being conformal? Polchinski (1988) showed that this may happen if the theory contains a virial current a non-conserved vector operator of dimension exactly (d - 1), whose divergence expresses the trace of the stress tensor. We point out that this scenario can be probed via lattice Monte Carlo simulations, using the critical 3d Ising model as an example. Our results put a lower bound (V) > 5.0 on the scaling dimension of the lowest virial current candidate V, well above 2 expected for the true virial current. This implies that the critical 3d Ising model has no virial current, providing a structural explanation for the conformal invariance of the model.
Riccardo Rattazzi, Alexander Monin, Eren Clément Firat, Matthew Thomas Walters