A search for charge-parity (CP) violation in Cabibbo-suppressed D-s(+) -> K-S(0)pi(+), D+ -> (KSK+)-K-0, and D+ -> phi pi(+) decays is reported using proton-proton collision data, corresponding to an integrated luminosity of 3.8 fb(-1), collected at a center-of-mass energy of 13 TeV with the LHCb detector. High-yield samples of kinematically and topologically similar Cabibbo-favored D-(s())+ decays are analyzed to subtract nuisance asymmetries due to production and detection effects, including those induced by CP violation in the neutral kaon system. The results are A(CP)(D-s(+) -> K-S(0)pi(+)) = (1.3 +/- 1.9 +/- 0.5) x 10(-3), A(CP)(D+ -> (KSK+)-K-0) = (-0.09 +/- 0.65 +/- 0.48) x 10(-3), A(CP)(D+ -> phi pi(+)) = (0.05 +/- 0.42 +/- 0.29) x 10(-3), where the first uncertainties are statistical and the second systematic. They are the most precise measurements of these quantities to date, and are consistent with CP symmetry. A combination with previous LHCb measurements, based on data collected at 7 and 8 TeV, is also reported.
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Lei Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Wei Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Muhammad Waqas, Hui Wang, Seungkyu Ha, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Valérie Scheurer, Muhammad Ansar Iqbal, Lukas Layer