**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# An Easily Computable Error Estimator In Space And Time For The Wave Equation

Abstract

We propose a cheaper version of a posteriori error estimator from Gorynina et al. (Namer. Anal. (2017)) for the linear second-order wave equation discretized by the Newmark scheme in time and by the finite element method in space. The new estimator preserves all the properties of the previous one (reliability, optimality on smooth solutions and quasi-uniform meshes) but no longer requires an extra computation of the Laplacian of the discrete solution on each time step.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (10)

Related concepts (33)

Related publications (68)

Numerical Analysis for Engineers

Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq

Numerical Analysis for Engineers

Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq

Numerical Analysis for Engineers

Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq

Annalisa Buffa, Denise Grappein, Rafael Vazquez Hernandez, Ondine Gabrielle Chanon

An a posteriori error estimator based on an equilibrated flux reconstruction is proposed for defeaturing problems in the context of finite element discretizations. Defeaturing consists in the simplification of a geometry by removing features that are consi ...

2023Marco Picasso, Paride Passelli

The p-Laplacian problem -del & sdot; ((mu + |del u|(p-2))del u) = f is considered, where mu is a given positive number. An anisotropic a posteriori residual-based error estimator is presented. The error estimator is shown to be equivalent, up to higher ord ...

Maximum likelihood estimation

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.

Wave equation

The (two-way) wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields - as they occur in classical physics - such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics. Single mechanical or electromagnetic waves propagating in a pre-defined direction can also be described with the first-order one-way wave equation, which is much easier to solve and also valid for inhomogeneous media.

Schrödinger equation

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. The equation is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933. Conceptually, the Schrödinger equation is the quantum counterpart of Newton's second law in classical mechanics.

,

Self-exciting point processes, widely used to model arrival phenomena in nature and society, are often difficult to identify. The estimation becomes even more challenging when arrivals are recorded only as bin counts on a finite partition of the observatio ...

2023