**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Irreducible Subgroups of Simple Algebraic Groups – A Survey

Abstract

Let G be a simple linear algebraic group over an algebraically closed field K of characteristic p≥ 0, let H be a proper closed subgroup of G and let V be a nontrivial finite dimensional irreducible rational KG-module. We say that (G,H, V) is an irreducible triple if V is irreducible as a KH-module. Determining these triples is a fundamental problem in the representation theory of algebraic groups, which arises naturally in the study of the subgroup structure of classical groups. In the 1980s, Seitz and Testerman extended earlier work of Dynkin on connected subgroups in characteristic zero to all algebraically closed fields. In this article we will survey recent advances towards a classification of irreducible triples for all positive dimensional subgroups of simple algebraic groups.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (5)

Related MOOCs (9)

Related publications (3)

Algebraic group

In mathematics, an algebraic group is an algebraic variety endowed with a group structure that is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Many groups of geometric transformations are algebraic groups; for example, orthogonal groups, general linear groups, projective groups, Euclidean groups, etc. Many matrix groups are also algebraic. Other algebraic groups occur naturally in algebraic geometry, such as elliptic curves and Jacobian varieties.

Linear algebraic group

In mathematics, a linear algebraic group is a subgroup of the group of invertible matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of . Many Lie groups can be viewed as linear algebraic groups over the field of real or complex numbers. (For example, every compact Lie group can be regarded as a linear algebraic group over R (necessarily R-anisotropic and reductive), as can many noncompact groups such as the simple Lie group SL(n,R).

Reductive group

In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n).

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

This dissertation is concerned with the study of irreducible embeddings of simple algebraic groups of exceptional type. It is motivated by the role of such embeddings in the study of positive dimensio

Let G be a simple algebraic group over an algebraically closed field F of characteristic p >= h, the Coxeter number of G. We observe an easy 'recursion formula' for computing the Jantzen sum formula o

We study (connected) reductive subgroups G of a reductive algebraic group H, where G contains a regular unipotent element of H. The main result states that G cannot lie in a proper parabolic subgroup

2013