Publication

Spiro-bifluorene core based hole transporting material with graphene oxide modified CH3NH3PbI3 for inverted planar heterojunction solar cells

Mohammad Khaja Nazeeruddin
2019
Journal paper
Abstract

Inverted planar heterojunction solar cells (iPHSCs) were fabricated with novel spiro-bifluorene (CF-Sp-BTh) based hole transport material (HTM) and graphene oxide (GO) modified perovskite (CH3NH3PbI3) as sensitizer. CF-Sp-BTh exhibited relatively high hole mobility and favorable HOMO level with respect to the valence band of CH3NH3PbI3. iPHSC using CF-Sp-BTh HTM and GO (0.5 wt%)-CH3NH3PbI3 achieved the power conversion efficiency (PCE) of similar to 14.28%, with open circuit voltage (V-OC) of similar to 1.07 V and a short circuit current density (J(SC)) of similar to 18.82 mA/cm(2). The photovoltaic performance of FTO/CF-Sp-BTh/GO- (0.5 wt%)-CH3NH3PbI3/PC61BM/Au was higher compared to pristine CH3NH3PbI3 and other GO-CH3NH3PbI3 hybrid based devices. The photoluminescence decay and electrochemical impedance spectra confirmed an enhanced charge separation and retarded charge recombination of GO-CH3NH3PbI3 hybrid based iPHSCs. (C) 2019 Elsevier Ltd. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.