MATHICSE Technical Report : A numerical investigation of multi space reduced basis preconditioners for parametrized elliptic advection-diffusion
Related publications (45)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Many applied problems, like transport processes in porous media or ferromagnetism in composite materials, can be modeled by partial differential equations (PDEs) with heterogeneous coefficients that rapidly vary at small scales. To capture the effective be ...
The characteristic of effective properties of physical processes in heterogeneous media is a basic modeling and computational problem for many applications. As standard numerical discretization of such multiscale problems (e.g. with classical finite elemen ...
Among the efficient numerical methods based on atomistic models, the quasi-continuum (QC) method has attracted growing interest in recent years. The QC method was first developed for crystalline materials with Bravais lattice and was later extended to mult ...
Parametrized systems of Differential Algebraic Equations (DAEs) stand at the base of several mathematical models in Microelectronics, Computational Fluid Dynamics and other Engineering fields. Since the dimension of these systems can be huge, high computat ...
We consider unconstrained minimax problem where the objective function is the maximum of a finite number of smooth convex functions. We present an iterative method to compute the optimal solution for the unconstrained convex finite minimax problem. The alg ...
In this thesis we address the numerical approximation of the incompressible Navier-Stokes equations evolving in a moving domain with the spectral element method and high order time integrators. First, we present the spectral element method and the basic to ...
We discuss in this thesis the numerical approximation of fluid-structure interaction (FSI) problems with a particular concern (albeit not exclusive) on hemodynamics applications. Firstly, we model the blood as an incompressible fluid and the artery wall as ...
The numerical solution of linear systems with certain tensor product structures is considered. Such structures arise, for example, from the finite element discretization of a linear PDE on a d-dimensional hypercube. Linear systems with tensor product struc ...
Society for Industrial and Applied Mathematics2009
This paper examines the computational complexity certification of the fast gradient method for the solution of the dual of a parametric con- vex program. To this end, a lower iteration bound is derived such that for all parameters from a compact set a solu ...
Power grid analysis is a challenging problem for mod- ern integrated circuits. For 3-D systems fabricated using stacked tiers with TSVs, traditional power grid analysis methods for pla- nar (2-D) circuits do not demonstrate the same performance. An efficie ...