Superconducting quantum computingSuperconducting quantum computing is a branch of solid state quantum computing that implements superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dots. For superconducting qubits, the two logic states are the ground state and the excited state, denoted respectively. Research in superconducting quantum computing is conducted by companies such as Google, IBM, IMEC, BBN Technologies, Rigetti, and Intel. Many recently developed QPUs (quantum processing units, or quantum chips) utilize superconducting architecture.
ComputingComputing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and development of both hardware and software. Computing has scientific, engineering, mathematical, technological and social aspects. Major computing disciplines include computer engineering, computer science, cybersecurity, data science, information systems, information technology, digital art and software engineering.
Antisymmetric relationIn mathematics, a binary relation on a set is antisymmetric if there is no pair of distinct elements of each of which is related by to the other. More formally, is antisymmetric precisely if for all or equivalently, The definition of antisymmetry says nothing about whether actually holds or not for any . An antisymmetric relation on a set may be reflexive (that is, for all ), irreflexive (that is, for no ), or neither reflexive nor irreflexive. A relation is asymmetric if and only if it is both antisymmetric and irreflexive.
Logic gateA logic gate is an idealized or physical device that performs a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has, for instance, zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device (see ideal and real op-amps for comparison). In the real world, the primary way of building logic gates uses diodes or transistors acting as electronic switches.
Total synthesisTotal synthesis is the complete chemical synthesis of a complex molecule, often a natural product, from simple, commercially-available precursors. It usually refers to a process not involving the aid of biological processes, which distinguishes it from semisynthesis. Syntheses may sometimes conclude at a precursor with further known synthetic pathways to a target molecule, in which case it is known as a formal synthesis. Total synthesis target molecules can be natural products, medicinally-important active ingredients, known intermediates, or molecules of theoretical interest.
Well-founded relationIn mathematics, a binary relation R is called well-founded (or wellfounded or foundational) on a class X if every non-empty subset S ⊆ X has a minimal element with respect to R, that is, an element m ∈ S not related by s R m (for instance, "s is not smaller than m") for any s ∈ S. In other words, a relation is well founded if Some authors include an extra condition that R is set-like, i.e., that the elements less than any given element form a set.
Relation (mathematics)In mathematics, a binary relation on a set may, or may not, hold between two given set members. For example, "is less than" is a relation on the set of natural numbers; it holds e.g. between 1 and 3 (denoted as 1
XOR gateXOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate implements an exclusive or () from mathematical logic; that is, a true output results if one, and only one, of the inputs to the gate is true. If both inputs are false (0/LOW) or both are true, a false output results. XOR represents the inequality function, i.e., the output is true if the inputs are not alike otherwise the output is false.
Congruence relationIn abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. Every congruence relation has a corresponding quotient structure, whose elements are the equivalence classes (or congruence classes) for the relation. The prototypical example of a congruence relation is congruence modulo on the set of integers.
Unconventional computingUnconventional computing is computing by any of a wide range of new or unusual methods. It is also known as alternative computing. The term unconventional computation was coined by Cristian S. Calude and John Casti and used at the First International Conference on Unconventional Models of Computation in 1998. The general theory of computation allows for a variety of models. Computing technology first developed using mechanical systems and then evolved into the use of electronic devices.