Publication

Towards an Algebraic Network Information Theory: Distributed Lossy Computation of Linear Functions

Abstract

Consider the important special case of the K-user distributed source coding problem where the decoder only wishes to recover one or more linear combinations of the sources. The work of Körner and Marton demonstrated that, in some cases, the optimal rate region is attained by random linear codes, and strictly improves upon the best-known achievable rate region established via random i.i.d. codes. Recent efforts have sought to develop a framework for characterizing the achievable rate region for nested linear codes via joint typicality encoding and decoding. Here, we make further progress along this direction by proposing an achievable rate region for simultaneous joint typicality decoding of nested linear codes. Our approach generalizes the results of Körner and Marton to computing an arbitrary number of linear combinations and to the lossy computation setting.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.