Vulnerability of Face Recognition to Deep Morphing
Related publications (52)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Generative Adversarial Network (GAN) based localized image editing can suffer from ambiguity between semantic attributes. We thus present a novel objective function to evaluate the locality of an image edit. By introducing the supervision from a pre-traine ...
Forecasting is a capability inherent in humans when navigating. Humans routinely plan their paths, considering the potential future movements of those around them. Similarly, to achieve comparable sophistication and safety, autonomous systems must embrace ...
Deepfakes - synthetic videos generated by machine learning models - are becoming increasingly sophisticated. While they have several positive use cases, their potential for harm is also high. Deepfake production involves input from multiple engineers, maki ...
2023
State-of-the-art face recognition systems require vast amounts of labeled training data. Given the priority of privacy in face recognition applications, the data is limited to celebrity web crawls, which have issues such as limited numbers of identities. O ...
Ieee Computer Soc2023
Automated fact-checking is a needed technology to curtail the spread of online misinformation. One current framework for such solutions proposes to verify claims by retrieving supporting or refuting evidence from related textual sources. However, the reali ...
ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE2022
, ,
In recent years, the remarkable progress in facial manipulation techniques has raised social concerns due to their potential malicious usage and has received considerable attention from both industry and academia. While current deep learning-based face for ...
2023
Refineries execute a series of interlinked processes, where the product of one unit serves as the input to another process. Potential failures within these processes affect the quality of the end products, operational efficiency, and revenue of the entire ...
2021
Deepfakes first came to prominence less than five years ago. Since then, they have surged in quantity and quality, becoming both a source of viral entertainment and of concern about the dark side of digital life. In this article, we provide a risk governan ...
International Risk Governance Center2021
,
Face recognition has become a popular authentication tool in recent years. Modern state-of-the-art (SOTA) face recognition methods rely on deep neural networks, which extract discriminative features from face images. Although these methods have high recogn ...
IEEE2021
,
Detecting digital face manipulation in images and video has attracted extensive attention due to the potential risk to public trust. To counteract the malicious usage of such techniques, deep learning-based deepfake detection methods have been employed and ...