3D XPoint (pronounced three-D cross point) is a discontinued non-volatile memory (NVM) technology developed jointly by Intel and Micron Technology. It was announced in July 2015 and was available on the open market under the brand name Optane (Intel) from April 2017 to July 2022. Bit storage is based on a change of bulk resistance, in conjunction with a stackable cross-grid data access array. Initial prices are less than dynamic random-access memory (DRAM) but more than flash memory.
As a non-volatile memory, 3D XPoint has a number of features that distinguish it from other currently available RAM and NVRAM. Although the first generations of 3D XPoint were not especially large or fast, 3D XPoint was used to create some of the fastest SSDs available as of 2019, with small-write latency. As the memory is inherently fast, and byte-addressable, techniques such as read-modify-write and caching used to enhance traditional SSDs are not needed to obtain high performance. In addition, chipsets such as Cascade Lake are designed with inbuilt support for 3D XPoint, that allow it to be used as a caching or acceleration disk, and it is also fast enough to be used as non-volatile RAM (NVRAM) in a DIMM package.
Development of 3D XPoint began around 2012. Intel and Micron had developed other non-volatile phase-change memory (PCM) technologies previously; Mark Durcan of Micron said 3D XPoint architecture differs from previous offerings of PCM, and uses chalcogenide materials for both selector and storage parts of the memory cell that are faster and more stable than traditional PCM materials like GST. But today, it is thought of as a subset of ReRAM.
3D XPoint has been stated to use electrical resistance and to be bit addressable. Similarities to the resistive random-access memory under development by Crossbar Inc. have been noted, but 3D XPoint uses different storage physics. Specifically, transistors are replaced by threshold switches as selectors in the memory cells. 3D XPoint developers indicate that it is based on changes in resistance of the bulk material.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides the trends in nanoelectronics for scaling, better performances and lower energy per function. It covers fundamental phenomena of nanoscale devices, beyond CMOS steep slope switche
Phase-change memory (also known as PCM, PCME, PRAM, PCRAM, OUM (ovonic unified memory) and C-RAM or CRAM (chalcogenide RAM)) is a type of non-volatile random-access memory. PRAMs exploit the unique behaviour of chalcogenide glass. In PCM, heat produced by the passage of an electric current through a heating element generally made of titanium nitride is used to either quickly heat and quench the glass, making it amorphous, or to hold it in its crystallization temperature range for some time, thereby switching it to a crystalline state.
Moore's law is the observation that the number of transistors in an integrated circuit (IC) doubles about every two years. Moore's law is an observation and projection of a historical trend. Rather than a law of physics, it is an empirical relationship linked to gains from experience in production. The observation is named after Gordon Moore, the co-founder of Fairchild Semiconductor and Intel (and former CEO of the latter), who in 1965 posited a doubling every year in the number of components per integrated circuit, and projected this rate of growth would continue for at least another decade.
Non-volatile memory (NVM) or non-volatile storage is a type of computer memory that can retain stored information even after power is removed. In contrast, volatile memory needs constant power in order to retain data. Non-volatile memory typically refers to storage in semiconductor memory chips, which store data in floating-gate memory cells consisting of floating-gate MOSFETs (metal–oxide–semiconductor field-effect transistors), including flash memory storage such as NAND flash and solid-state drives (SSD).
Explores the evolution of magnetic storage techniques, from longitudinal to perpendicular recording, and heat-assisted magnetic recording, as well as magnetic-core memory principles and magnetoresistive RAM technology.
Explores the landscape of big data, memory importance in online services, challenges faced by memory systems, emerging DRAM technologies, and storage-class memory.
In-memory computing using resistive memory devices is a promising non-von Neumann approach for making energy-efficient deep learning inference hardware. However, due to device variability and noise, the network needs to be trained in a specific way so that ...
2020
, , , ,
The increasing size of Convolutional Neural Networks (CNNs) and the high computational workload required for inference pose major challenges for their deployment on resource-constrained edge devices. In this paper, we address them by proposing a novel In-M ...
2021
, ,
While Resistive Random Access Memories (RRAM) are perceived nowadays as a promising solution for the future of computing, these technologies suffer from intrinsic variability regarding programming voltage, switching speed and achieved resistance values. Wr ...