Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The spectral measure plays a key role in the statistical modeling of multivariate extremes. Estimation of the spectral measure is a complex issue, given the need to obey a certain moment condition. We propose a Euclidean likelihood-based estimator for the ...
This work is concerned with the estimation of the spreading potential of the disease in the initial stages of an epidemic. A speedy and accurate estimation is important for determining whether or not interventions are necessary to prevent a major outbreak. ...
Commonly employed reconstruction algorithms in compressed sensing (CS) use the L-2 norm as the metric for the residual error. However, it is well-known that least squares (LS) based estimators are highly sensitive to outliers present in the measurement vec ...
Institute of Electrical and Electronics Engineers2013
We consider the reconstruction of multi-dimensional signals from noisy samples. The problem is formulated within the framework of the theory of continuous-domain sparse stochastic processes. In particular, we study the fractional Laplacian as the whitening ...
The trends in the design of image sensors are to build sensors with low noise, high sensitivity, high dynamic range, and small pixel size. How can we benefit from pixels with small size and high sensitivity? In this dissertation, we study a new image senso ...
We study distributed least-mean square (LMS) estimation problems over adaptive networks, where nodes cooperatively work to estimate and track common parameters of an unknown system. We consider a scenario where the input and output response signals of the ...
We propose a novel statistical formulation of the image-reconstruction problem from noisy linear measurements. We derive an extended family of MAP estimators based on the theory of continuous-domain sparse stochastic processes. We highlight the crucial rol ...
We propose a novel statistical formulation of the image-reconstruction problem from noisy linear measurements. We derive an extended family of MAP estimators based on the theory of continuous-domain sparse stochastic processes. We highlight the crucial ro ...
In this paper, we derive elementary M- and optimally robust asymptotic linear (AL)-estimates for the parameters of an Ornstein-Uhlenbeck process. Simulation and estimation of the process are already well-studied, see Iacus (Simulation and inference for sto ...
[B. Fares et al., J. Comput. Phys., 230 (2011), pp. 5532-5555], a reduced basis method (RBM) for the electric field integral equation (EFIE) using the boundary element method (BEM) is developed, based on a simplified a posteriori error estimator for the gr ...