Publication

Chiral N-Heterocyclic Carbene Ligands for Asymmetric Catalysis

Johannes Diesel
2019
EPFL thesis
Abstract

N-Heterocyclic carbenes (NHCs) are the ligands of choice in a large variety of transformations entailing different transition metals. However, the number of chiral NHCs suitable as stereocontrolling ligands in asymmetric catalysis remains limited. In particular, a chiral version of the widely applied IPr may be of use for a large variety of asymmetric transformations. This thesis focuses on the introduction of a modular NHC ligand family, resembling a chiral version of IPr, and their application in nickel catalyzed enantioselective C-H functionalizations of N-heterocycles. Nickel-NHC catalysis enabled the C-H annulation of 2- and 4-pyridones, delivering fused bicyclic compounds found in many biologically active compounds. Crucial to the transformation was the introduction of a sterically hindered and tuneable chiral NHC. Applying this bulky, yet flexible ligand scaffold enabled the highly enantioselective C-H functionalization of pyridones under mild conditions. The introduction of a bulky chiral SIPr analogue enabled the nickel catalyzed enantioselective C-H functionalization of indoles, yielding valuable tetrahydropyridoindoles. The process is characterized by a clear endo-cyclization preference to form the sought-after six-membered-ring annulated N-heterocycles without the need for the typically applied Lewis basic directing groups. Additionally, pyrrolopyridines, pyrrolopyrimidines and pyrroles were efficiently functionalized, delivering chiral annulated azoles.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.