**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# A finitely presented infinite simple group of homeomorphisms of the circle

Abstract

We construct a finitely presented, infinite, simple group that acts by homeomorphisms on the circle, but does not admit a non-trivial action by C1-diffeomorphisms on the circle. This is the first such example. The group emerges as a group of piecewise projective homeomorphisms of S1=R?{infinity}. We also show that it does not admit a non-trivial action by piecewise linear homeomorphisms of the circle. Another interesting and new feature of this example is that it produces a non-amenable orbit equivalence relation with respect to the Lebesgue measure.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (6)

Simple group

In mathematics, a simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself. A group that is not simple can be broken into two smaller groups, namely a nontrivial normal subgroup and the corresponding quotient group. This process can be repeated, and for finite groups one eventually arrives at uniquely determined simple groups, by the Jordan–Hölder theorem. The complete classification of finite simple groups, completed in 2004, is a major milestone in the history of mathematics.

Homeomorphism

In the mathematical field of topology, a homeomorphism (, named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the —that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same.

Lebesgue measure

In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of n-dimensional Euclidean space. For n = 1, 2, or 3, it coincides with the standard measure of length, area, or volume. In general, it is also called n-dimensional volume, n''-volume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration.