Exotic atomAn exotic atom is an otherwise normal atom in which one or more sub-atomic particles have been replaced by other particles of the same charge. For example, electrons may be replaced by other negatively charged particles such as muons (muonic atoms) or pions (pionic atoms). Because these substitute particles are usually unstable, exotic atoms typically have very short lifetimes and no exotic atom observed so far can persist under normal conditions.
Top quark condensateIn particle physics, the top quark condensate theory (or top condensation) is an alternative to the Standard Model fundamental Higgs field, where the Higgs boson is a composite field, composed of the top quark and its antiquark. The top quark-antiquark pairs are bound together by a new force called topcolor, analogous to the binding of Cooper pairs in a BCS superconductor, or mesons in the strong interactions.
Higgs bosonThe Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge that couples to (interacts with) mass. It is also very unstable, decaying into other particles almost immediately upon generation.
PionIn particle physics, a pion (or a pi meson, denoted with the Greek letter pi: _Pion) is any of three subatomic particles: _Pion0, _Pion+, and _Pion-. Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more generally, the lightest hadrons. They are unstable, with the charged pions _Pion+ and _Pion- decaying after a mean lifetime of 26.033 nanoseconds (2.6033e-8 seconds), and the neutral pion _Pion0 decaying after a much shorter lifetime of 85 attoseconds (8.
Flavor-changing neutral currentIn particle physics, flavor-changing neutral currents or flavour-changing neutral currents (FCNCs) are hypothetical interactions that change the flavor of a fermion without altering its electric charge. If they occur in nature (as reflected by Lagrangian interaction terms), these processes may induce phenomena that have not yet been observed in experiment. Flavor-changing neutral currents may occur in the Standard Model beyond the tree level, but they are highly suppressed by the GIM mechanism.
W and Z bosonsIn particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are _W boson+, _W boson-, and _Z boson0. The _W boson+- bosons have either a positive or negative electric charge of 1 elementary charge and are each other's antiparticles. The _Z boson0 boson is electrically neutral and is its own antiparticle. The three particles each have a spin of 1.
ProtonA proton is a stable subatomic particle, symbol _Proton, H+, or 1H+ with a positive electric charge of +1 e (elementary charge). Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton-to-electron mass ratio). Protons and neutrons, each with masses of approximately one atomic mass unit, are jointly referred to as "nucleons" (particles present in atomic nuclei). One or more protons are present in the nucleus of every atom.
Quark modelIn particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Eightfold Way, the successful classification scheme organizing the large number of lighter hadrons that were being discovered starting in the 1950s and continuing through the 1960s. It received experimental verification beginning in the late 1960s and is a valid effective classification of them to date.
Current quarkCurrent quarks (also called naked quarks or bare quarks) are a description of valence quarks as the cores of the quark particles that are the invariable parts of a hadron, with their non-virtual ("real" or permanent) quarks with their surrounding "covering" of evanescent gluons and virtual quarks imagined stripped away. In quantum chromodynamics, the mass of the current quarks is called the current quark mass, as opposed to the much larger mass of the composite particle which is carried in the gluon and virtual quark covering.
Neutral currentWeak neutral current interactions are one of the ways in which subatomic particles can interact by means of the weak force. These interactions are mediated by the Z boson. The discovery of weak neutral currents was a significant step toward the unification of electromagnetism and the weak force into the electroweak force, and led to the discovery of the W and Z bosons. The weak force is best known for its role in nuclear decay. It has very short range but (apart from gravity) is the only force to interact with neutrinos.