Fermat numberIn mathematics, a Fermat number, named after Pierre de Fermat, the first known to have studied them, is a positive integer of the form where n is a non-negative integer. The first few Fermat numbers are: 3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, ... . If 2k + 1 is prime and k > 0, then k itself must be a power of 2, so 2k + 1 is a Fermat number; such primes are called Fermat primes. , the only known Fermat primes are F0 = 3, F1 = 5, F2 = 17, F3 = 257, and F4 = 65537 ; heuristics suggest that there are no more.
Pierpont primeIn number theory, a Pierpont prime is a prime number of the form for some nonnegative integers u and v. That is, they are the prime numbers p for which p − 1 is 3-smooth. They are named after the mathematician James Pierpont, who used them to characterize the regular polygons that can be constructed using conic sections. The same characterization applies to polygons that can be constructed using ruler, compass, and angle trisector, or using paper folding. Except for 2 and the Fermat primes, every Pierpont prime must be 1 modulo 6.
Local homeomorphismIn mathematics, more specifically topology, a local homeomorphism is a function between topological spaces that, intuitively, preserves local (though not necessarily global) structure. If is a local homeomorphism, is said to be an étale space over Local homeomorphisms are used in the study of sheaves. Typical examples of local homeomorphisms are covering maps.
OrientabilityIn mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space is orientable if such a consistent definition exists. In this case, there are two possible definitions, and a choice between them is an orientation of the space. Real vector spaces, Euclidean spaces, and spheres are orientable.
Fundamental polygonIn mathematics, a fundamental polygon can be defined for every compact Riemann surface of genus greater than 0. It encodes not only the topology of the surface through its fundamental group but also determines the Riemann surface up to conformal equivalence. By the uniformization theorem, every compact Riemann surface has simply connected universal covering surface given by exactly one of the following: the Riemann sphere, the complex plane, the unit disk D or equivalently the upper half-plane H.
Extended real number lineIn mathematics, the affinely extended real number system is obtained from the real number system by adding two infinity elements: and where the infinities are treated as actual numbers. It is useful in describing the algebra on infinities and the various limiting behaviors in calculus and mathematical analysis, especially in the theory of measure and integration. The affinely extended real number system is denoted or or It is the Dedekind–MacNeille completion of the real numbers.
Mapping class groupIn mathematics, in the subfield of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a certain discrete group corresponding to symmetries of the space. Consider a topological space, that is, a space with some notion of closeness between points in the space. We can consider the set of homeomorphisms from the space into itself, that is, continuous maps with continuous inverses: functions which stretch and deform the space continuously without breaking or gluing the space.
CobordismIn mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary (French bord, giving cobordism) of a manifold. Two manifolds of the same dimension are cobordant if their disjoint union is the boundary of a compact manifold one dimension higher. The boundary of an (n + 1)-dimensional manifold W is an n-dimensional manifold ∂W that is closed, i.e., with empty boundary.
Amenable groupIn mathematics, an amenable group is a locally compact topological group G carrying a kind of averaging operation on bounded functions that is invariant under translation by group elements. The original definition, in terms of a finitely additive measure (or mean) on subsets of G, was introduced by John von Neumann in 1929 under the German name "messbar" ("measurable" in English) in response to the Banach–Tarski paradox. In 1949 Mahlon M. Day introduced the English translation "amenable", apparently as a pun on "mean".
Projectively extended real lineIn real analysis, the projectively extended real line (also called the one-point compactification of the real line), is the extension of the set of the real numbers, , by a point denoted ∞. It is thus the set with the standard arithmetic operations extended where possible, and is sometimes denoted by or The added point is called the point at infinity, because it is considered as a neighbour of both ends of the real line. More precisely, the point at infinity is the limit of every sequence of real numbers whose absolute values are increasing and unbounded.