Nombre de Fermatthumb|Le mathématicien français Pierre de Fermat (1601-1665) étudia les propriétés des nombres portant maintenant son nom. Un nombre de Fermat est un nombre qui peut s'écrire sous la forme 22n + 1, avec n entier naturel. Le n-ième nombre de Fermat, 22n + 1, est noté Fn. Ces nombres doivent leur nom à Pierre de Fermat, qui émit la conjecture que tous ces nombres étaient premiers. Cette conjecture se révéla fausse, F5 étant composé, de même que tous les suivants jusqu'à F32.
Nombre premier de PierpontEn arithmétique, les nombres premiers de Pierpont — nommés ainsi d'après James Pierpont — sont les nombres premiers de la forme 23 + 1, pour u et v deux entiers naturels. On montre facilement que si v = 0 et u > 0, alors u doit être une puissance de 2, c'est-à-dire que 2 + 1 doit être un nombre de Fermat. Par ailleurs, si v > 0 alors u doit être lui aussi non nul (car si v > 0 alors le nombre pair est strictement supérieur à 2 et par conséquent composé) donc le nombre de Pierpont est de la forme 6k + 1.
Local homeomorphismIn mathematics, more specifically topology, a local homeomorphism is a function between topological spaces that, intuitively, preserves local (though not necessarily global) structure. If is a local homeomorphism, is said to be an étale space over Local homeomorphisms are used in the study of sheaves. Typical examples of local homeomorphisms are covering maps.
Orientabilitédroite|vignette| Un tore est une surface orientable droite|vignette| Le ruban de Möbius est une surface non orientable. Notez que le crabe violoniste qui se déplace autour de lui est retourné à gauche et à droite à chaque circulation complète. Cela ne se produirait pas si le crabe était sur le tore. droite|vignette| La surface romaine n'est pas orientable En mathématiques, l'orientabilité est une propriété des surfaces dans l'espace euclidien qui mesure s'il est possible de faire un choix cohérent de vecteur normal de surface en chaque point.
Fundamental polygonIn mathematics, a fundamental polygon can be defined for every compact Riemann surface of genus greater than 0. It encodes not only the topology of the surface through its fundamental group but also determines the Riemann surface up to conformal equivalence. By the uniformization theorem, every compact Riemann surface has simply connected universal covering surface given by exactly one of the following: the Riemann sphere, the complex plane, the unit disk D or equivalently the upper half-plane H.
Droite réelle achevéeEn mathématiques, la droite réelle achevée désigne l'ensemble ordonné constitué des nombres réels auxquels sont adjoints deux éléments supplémentaires : un plus grand élément, noté +∞ et un plus petit élément, noté –∞. Elle est notée [–∞, +∞], R ∪ {–∞, +∞} ou (notation toutefois ambiguë, car la barre signifie généralement "complémentaire" en théorie des ensembles, ou "adhérence" en topologie). Cet ensemble est très utile en analyse, notamment pour généraliser les formules et théorèmes sur les limites sans avoir à effectuer une disjonction des cas, et dans certaines théories de l'intégration.
DifféotopieEn mathématiques, une difféotopie est une classe d'équivalence pour la relation d’isotopie entre difféomorphismes sur une variété différentielle. Plus explicitement, étant donnés deux difféomorphismes sur une telle variété M, c’est-à-dire deux applications φ, φ : M → M différentiables et bijectives avec des réciproques différentiables, on dit que ces difféomorphismes sont isotopes s’il existe une famille de difféomorphismes φ pour t ∈ ]0, 1[ telle que Φ : (t, x) ↦ φ(x) définisse une application différentiable sur [0, 1] × M.
CobordismeEn topologie différentielle, le cobordisme est une relation d'équivalence entre variétés différentielles compactes. Deux variétés compactes M et N sont dites cobordantes ou en cobordisme si leur réunion disjointe peut être réalisée comme le bord d'une variété à bord compacte L. On dit alors que cette variété L est un cobordisme entre M et N, ou bien que L réalise un cobordisme entre M et N. L'existence d'un tel cobordisme implique que M et N soient de même dimension.
Groupe moyennableEn mathématiques, un groupe moyennable (parfois appelé groupe amenable par calque de l'anglais) est un groupe topologique localement compact qu'on peut munir d'une opération de « moyenne » sur les fonctions bornées, invariante par les translations par les éléments du groupe. La définition initiale, donnée à partir d'une mesure (simplement additive) des sous-ensembles du groupe, fut proposée par John von Neumann en 1929 à la suite de son analyse du paradoxe de Banach-Tarski.
Projectively extended real lineIn real analysis, the projectively extended real line (also called the one-point compactification of the real line), is the extension of the set of the real numbers, , by a point denoted ∞. It is thus the set with the standard arithmetic operations extended where possible, and is sometimes denoted by or The added point is called the point at infinity, because it is considered as a neighbour of both ends of the real line. More precisely, the point at infinity is the limit of every sequence of real numbers whose absolute values are increasing and unbounded.