Regularity In Time Of Holder Solutions Of Euler And Hypodissipative Navier-Stokes Equations
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
To enforce the conservation of mass principle, a pressure Poisson equation arises in the numerical solution of incompressible fluid flow using the pressure-based segregated algorithms such as projection methods. For unsteady flows, the pressure Poisson equ ...
The thesis is dedicated to the study of two main partial differential equations (PDEs) in fluid dynamics: the Navier-Stokes equations, which describe the motion of incompressible fluids, and the transport equation with divergence-free velocity fields, whic ...
This work is devoted to the study of the main models which describe the motion of incompressible fluids, namely the Navier-Stokes, together with their hypodissipative version, and the Euler equations. We will mainly focus on the analysis of non-smooth weak ...
Weak solutions arise naturally in the study of the Navier-Stokes and Euler equations both from an abstract regularity/blow-up perspective and from physical theories of turbulence. This thesis studies the structure and size of singular set of such weak solu ...
We present a multi-physics model for the approximation of the coupled system formed by the temperature-dependent Navier-Stokes equations with free surfaces. The main application is the industrial process of shallow laser surface melting (SLSM), for laser p ...
A space-time adaptive algorithm to solve the motion of a rigid disk in an incompressible Newtonian fluid is presented, which allows collision or quasi-collision processes to be computed with high accuracy. In particular, we recover the theoretical result p ...
Macroscale and mesoscale simulations of hyper-concentrated sediment-laden flows rely on robust couplings of the Reynolds-Averaged Navier-Stokes equations in conjunction with the shear-stress transport k-ω turbulence model. Also other closure laws for model ...
Can every measure-valued solution to the compressible Euler equations be approximated by a sequence of weak solutions? We prove that the answer is negative: generalizing a well-known rigidity result of Ball and James to a more general situation, we constru ...
Given any solutionuof the Euler equations which is assumed to have some regularity in space-in terms of Besov norms, natural in this context-we show by interpolation methods that it enjoys a corresponding regularity in time and that the associated pressure ...
We prove the ill-posedness of Leray solutions to the Cauchy problem for the hypodissipative Navier-Stokes equations, when the dissipative term is a fractional Laplacian with exponent . The proof follows the "convex integration methods" introduced by the se ...