Publication

Modeling of Short-Channel Effects in GaN HEMTs

Farzan Jazaeri
2020
Journal paper
Abstract

In this article, we propose an explicit and analytic charge-based model for estimating short-channel effects (SCEs) in GaN high-electron-mobility transistor (HEMT) devices. The proposed model is derived from the physical charge-based core of the ecole Polytechnique Federale de Lausanne (EPFL) HEMT model, which treats HEMT as a generalized MOSFET. The main emphasis of this article is to estimate SCEs by effectively capturing 2-D channel potential distribution to calculate the reduced barrier height, drain-induced barrier lowering (DIBL), velocity saturation, and channel length modulation (CLM). The model is validated with TCAD simulation results and agreed with measurement data in all regions of operation. This represents the main step toward the design of high-frequency and ultralow-noise HEMT devices using AlGaN/GaN heterostructures.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.